These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 26159376)
1. Controlling the flexibility and single-crystal to single-crystal interpenetration reconstitution of metal-organic frameworks. Zhou DD; Liu ZJ; He CT; Liao PQ; Zhou HL; Zhong ZS; Lin RB; Zhang WX; Zhang JP; Chen XM Chem Commun (Camb); 2015 Aug; 51(63):12665-8. PubMed ID: 26159376 [TBL] [Abstract][Full Text] [Related]
2. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Prasad TK; Suh MP Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955 [TBL] [Abstract][Full Text] [Related]
3. Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7-Fold to 8-Fold Interpenetrated Metal-Organic Frameworks (MOFs). Chen Z; Gallo G; Sawant VA; Zhang T; Zhu M; Liang L; Chanthapally A; Bolla G; Quah HS; Liu X; Loh KP; Dinnebier RE; Xu QH; Vittal JJ Angew Chem Int Ed Engl; 2020 Jan; 59(2):833-838. PubMed ID: 31573739 [TBL] [Abstract][Full Text] [Related]
4. Controlled partial interpenetration in metal-organic frameworks. Ferguson A; Liu L; Tapperwijn SJ; Perl D; Coudert FX; Van Cleuvenbergen S; Verbiest T; van der Veen MA; Telfer SG Nat Chem; 2016 Mar; 8(3):250-7. PubMed ID: 26892557 [TBL] [Abstract][Full Text] [Related]
5. Network flexibility: control of gate opening in an isostructural series of Ag-MOFs by linker substitution. Handke M; Weber H; Lange M; Möllmer J; Lincke J; Gläser R; Staudt R; Krautscheid H Inorg Chem; 2014 Jul; 53(14):7599-607. PubMed ID: 24967844 [TBL] [Abstract][Full Text] [Related]
6. Redox-switchable breathing behavior in tetrathiafulvalene-based metal-organic frameworks. Su J; Yuan S; Wang HY; Huang L; Ge JY; Joseph E; Qin J; Cagin T; Zuo JL; Zhou HC Nat Commun; 2017 Dec; 8(1):2008. PubMed ID: 29222485 [TBL] [Abstract][Full Text] [Related]
7. Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. Gupta M; Zhu Z; Kottilil D; Rath BB; Tian W; Tan ZK; Liu X; Xu QH; Ji W; Vittal JJ ACS Appl Mater Interfaces; 2021 Dec; 13(50):60163-60172. PubMed ID: 34874696 [TBL] [Abstract][Full Text] [Related]
8. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y; Peterson VK; Luks E; Darwish TA; Kepert CJ Angew Chem Int Ed Engl; 2014 May; 53(20):5175-8. PubMed ID: 24692065 [TBL] [Abstract][Full Text] [Related]
9. A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. Yao Q; Sun J; Li K; Su J; Peskov MV; Zou X Dalton Trans; 2012 Apr; 41(14):3953-5. PubMed ID: 22301720 [TBL] [Abstract][Full Text] [Related]
10. Single-atom ligand changes affect breathing in an extended metal-organic framework. Dau PV; Kim M; Garibay SJ; Münch FH; Moore CE; Cohen SM Inorg Chem; 2012 May; 51(10):5671-6. PubMed ID: 22545717 [TBL] [Abstract][Full Text] [Related]
11. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. Henke S; Schneemann A; Wütscher A; Fischer RA J Am Chem Soc; 2012 Jun; 134(22):9464-74. PubMed ID: 22575013 [TBL] [Abstract][Full Text] [Related]
12. Interpenetration Isomerism in Triptycene-Based Hydrogen-Bonded Organic Frameworks. Li P; Li P; Ryder MR; Liu Z; Stern CL; Farha OK; Stoddart JF Angew Chem Int Ed Engl; 2019 Feb; 58(6):1664-1669. PubMed ID: 30548232 [TBL] [Abstract][Full Text] [Related]
13. Molecular tectonics of mixed-ligand metal-organic frameworks: positional isomeric effect, metal-directed assembly, and structural diversification. Du M; Jiang XJ; Zhao XJ Inorg Chem; 2007 May; 46(10):3984-95. PubMed ID: 17432846 [TBL] [Abstract][Full Text] [Related]
14. Construction of Interpenetrated Ruthenium Metal-Organic Frameworks as Stable Photocatalysts for CO2 Reduction. Zhang S; Li L; Zhao S; Sun Z; Luo J Inorg Chem; 2015 Sep; 54(17):8375-9. PubMed ID: 26347291 [TBL] [Abstract][Full Text] [Related]
15. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. Song F; Wang C; Falkowski JM; Ma L; Lin W J Am Chem Soc; 2010 Nov; 132(43):15390-8. PubMed ID: 20936862 [TBL] [Abstract][Full Text] [Related]
16. Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Ma S; Yuan D; Wang XS; Zhou HC Inorg Chem; 2009 Mar; 48(5):2072-7. PubMed ID: 19235968 [TBL] [Abstract][Full Text] [Related]
17. Guest inclusion and interpenetration tuning of Cd(II)/Mn(II) coordination grid networks assembled from a rigid linear diimidazole Schiff base ligand. Wang Q; Zhang J; Zhuang CF; Tang Y; Su CY Inorg Chem; 2009 Jan; 48(1):287-95. PubMed ID: 19035763 [TBL] [Abstract][Full Text] [Related]
18. Isolation of a structural intermediate during switching of degree of interpenetration in a metal-organic framework. Aggarwal H; Das RK; Bhatt PM; Barbour LJ Chem Sci; 2015 Aug; 6(8):4986-4992. PubMed ID: 30155004 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated Cd(II) grid network. Zhuang CF; Zhang J; Wang Q; Chu ZH; Fenske D; Su CY Chemistry; 2009 Aug; 15(31):7578-85. PubMed ID: 19579237 [TBL] [Abstract][Full Text] [Related]