These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26159554)
1. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches. Li J; Zhou N; Liu W; Li J; Feng Y; Wang X; Wu C; Bao J J Biomol Struct Dyn; 2016 May; 34(5):1101-12. PubMed ID: 26159554 [TBL] [Abstract][Full Text] [Related]
2. Exploring the Role of Water Molecules in the Ligand Binding Domain of PDE4B and PDE4D: Virtual Screening Based Molecular Docking of Some Active Scaffolds. Singh P; Mishra M; Agarwal S; Sau S; Iyer AK; Kashaw SK Curr Comput Aided Drug Des; 2019; 15(4):334-366. PubMed ID: 30394213 [TBL] [Abstract][Full Text] [Related]
4. New insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies. Guariento S; Bruno O; Fossa P; Cichero E Mol Divers; 2016 Feb; 20(1):77-92. PubMed ID: 26290462 [TBL] [Abstract][Full Text] [Related]
5. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. Xing M; Akowuah GA; Gautam V; Gaurav A J Biomol Struct Dyn; 2017 Oct; 35(13):2910-2924. PubMed ID: 27608741 [TBL] [Abstract][Full Text] [Related]
6. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. Tripuraneni NS; Azam MA J Biomol Struct Dyn; 2016 Nov; 34(11):2481-92. PubMed ID: 26587754 [TBL] [Abstract][Full Text] [Related]
7. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors. Tripuraneni NS; Azam MA J Theor Biol; 2016 Apr; 394():117-126. PubMed ID: 26804643 [TBL] [Abstract][Full Text] [Related]
8. Pharmacophore modeling and virtual screening for the discovery of new type 4 cAMP phosphodiesterase (PDE4) inhibitors. Niu M; Dong F; Tang S; Fida G; Qin J; Qiu J; Liu K; Gao W; Gu Y PLoS One; 2013; 8(12):e82360. PubMed ID: 24340020 [TBL] [Abstract][Full Text] [Related]
9. Discovery and modelling studies of natural ingredients from Gaultheria yunnanensis (FRANCH.) against phosphodiesterase-4. Cai YH; Guo Y; Li Z; Wu D; Li X; Zhang H; Yang J; Lu H; Sun Z; Luo HB; Yin S; Wu Y Eur J Med Chem; 2016 May; 114():134-40. PubMed ID: 26978121 [TBL] [Abstract][Full Text] [Related]
10. Design and Synthesis of Substituted Pyridazinone-1-Acetylhydrazones as Novel Phosphodiesterase 4 Inhibitors. Abdel-Rahman HM; Abdel-Aziz M; Tinsley HN; Gary BD; Canzoneri JC; Piazza GA Arch Pharm (Weinheim); 2016 Feb; 349(2):104-11. PubMed ID: 26686665 [TBL] [Abstract][Full Text] [Related]
11. The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay. Zhao P; Chen SK; Cai YH; Lu X; Li Z; Cheng YK; Zhang C; Hu X; He X; Luo HB Biochim Biophys Acta; 2013 Oct; 1834(10):2089-96. PubMed ID: 23871879 [TBL] [Abstract][Full Text] [Related]
12. Assessing protein-ligand binding modes with computational tools: the case of PDE4B. Çifci G; Aviyente V; Akten ED; Monard G J Comput Aided Mol Des; 2017 Jun; 31(6):563-575. PubMed ID: 28534194 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives: their evaluation as potential PDE 4B inhibitors possessing cytotoxic properties against cancer cells. Praveena KS; Durgadas S; Suresh Babu N; Akkenapally S; Ganesh Kumar C; Deora GS; Murthy NY; Mukkanti K; Pal S Bioorg Chem; 2014 Apr; 53():8-14. PubMed ID: 24463218 [TBL] [Abstract][Full Text] [Related]
15. Investigating the role of N-terminal domain in phosphodiesterase 4B-inhibition by molecular dynamics simulation. Sharma V; Wakode S J Biomol Struct Dyn; 2021 Aug; 39(12):4270-4278. PubMed ID: 32552529 [TBL] [Abstract][Full Text] [Related]
16. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment. Brullo C; Ricciarelli R; Prickaerts J; Arancio O; Massa M; Rotolo C; Romussi A; Rebosio C; Marengo B; Pronzato MA; van Hagen BTJ; van Goethem NP; D'Ursi P; Orro A; Milanesi L; Guariento S; Cichero E; Fossa P; Fedele E; Bruno O Eur J Med Chem; 2016 Nov; 124():82-102. PubMed ID: 27560284 [TBL] [Abstract][Full Text] [Related]
17. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4). Cameron RT; Coleman RG; Day JP; Yalla KC; Houslay MD; Adams DR; Shoichet BK; Baillie GS Biochem Pharmacol; 2013 May; 85(9):1297-305. PubMed ID: 23473803 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Fox D; Burgin AB; Gurney ME Cell Signal; 2014 Mar; 26(3):657-63. PubMed ID: 24361374 [TBL] [Abstract][Full Text] [Related]
19. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. Gao Q; Wang Y; Hou J; Yao Q; Zhang J J Comput Aided Mol Des; 2017 Jul; 31(7):625-641. PubMed ID: 28623487 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Mareddy J; Nallapati SB; Anireddy J; Devi YP; Mangamoori LN; Kapavarapu R; Pal S Bioorg Med Chem Lett; 2013 Dec; 23(24):6721-7. PubMed ID: 24215890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]