These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26159811)

  • 1. Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule.
    Baninajjaryan A; Tadi Beni Y
    J Theor Biol; 2015 Oct; 382():111-21. PubMed ID: 26159811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration and length-dependent flexural rigidity of protein microtubules using higher order shear deformation theory.
    Tounsi A; Heireche H; Benhassaini H; Missouri M
    J Theor Biol; 2010 Sep; 266(2):250-5. PubMed ID: 20609368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects.
    Daneshmand F; Farokhi H; Amabili M
    Math Biosci; 2014 Jun; 252():67-82. PubMed ID: 24657874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules.
    Li C; Ru CQ; Mioduchowski A
    Biochem Biophys Res Commun; 2006 Oct; 349(3):1145-50. PubMed ID: 16965761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations.
    Daneshmand F; Ghavanloo E; Amabili M
    J Biomech; 2011 Jul; 44(10):1960-6. PubMed ID: 21632054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.
    Shen HS
    Biomech Model Mechanobiol; 2010 Jun; 9(3):345-57. PubMed ID: 19941152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model.
    Taj M; Zhang JQ
    Biochem Biophys Res Commun; 2012 Jul; 424(1):89-93. PubMed ID: 22728877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory.
    Ghorbanpour Arani A; Abdollahian M; Jalaei MH
    J Theor Biol; 2015 Feb; 367():29-38. PubMed ID: 25479416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model.
    Shen HS
    J Theor Biol; 2010 May; 264(2):386-94. PubMed ID: 20167222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized vibration of a microtubule surrounded by randomly distributed cross linkers.
    Jin MZ; Ru CQ
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24728501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration of elliptic cylindrical shells: higher order shell theory.
    Hayek SI; Boisvert JE
    J Acoust Soc Am; 2010 Sep; 128(3):1063-72. PubMed ID: 20815443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Theor Biol; 2017 Jun; 422():59-71. PubMed ID: 28427819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling.
    Daneshmand F; Amabili M
    J Biol Phys; 2012 Jun; 38(3):429-48. PubMed ID: 23729907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.
    Beni YT; Zeverdejani MK; Mehralian F
    Math Biosci; 2017 Oct; 292():18-29. PubMed ID: 28709975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model.
    Taj M; Zhang J
    J Mech Behav Biomed Mater; 2014 Feb; 30():300-5. PubMed ID: 24361934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects.
    Gao XL; Zhang GY
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160275. PubMed ID: 27493578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory.
    Gao Y; Lei FM
    Biochem Biophys Res Commun; 2009 Sep; 387(3):467-71. PubMed ID: 19615341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid.
    Mat Daud NI; Viswanathan KK
    PLoS One; 2019; 14(7):e0219089. PubMed ID: 31269073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration and Buckling of Shear Deformable Functionally Graded Nanoporous Metal Foam Nanoshells.
    Zhang Y; Zhang F
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781404
    [No Abstract]   [Full Text] [Related]  

  • 20. Temperature dependence of the flexural rigidity of single microtubules.
    Kawaguchi K; Ishiwata S; Yamashita T
    Biochem Biophys Res Commun; 2008 Feb; 366(3):637-42. PubMed ID: 18068120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.