These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26159811)

  • 21. Vibration of prolate spheroidal shells with shear deformation and rotatory inertia: axisymmetric case.
    Hayek SI; Boisvert JE
    J Acoust Soc Am; 2003 Nov; 114(5):2799-811. PubMed ID: 14650015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
    Kurachi M; Hoshi M; Tashiro H
    Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory.
    Najaafi N; Jamali M; Habibi M; Sadeghi S; Jung DW; Nabipour N
    J Biomol Struct Dyn; 2021 Apr; 39(7):2543-2554. PubMed ID: 32242490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient size-dependent shear deformable shell model and molecular dynamics simulation for axial instability analysis of silicon nanoshells.
    Sahmani S; Aghdam MM; Bahrami M
    J Mol Graph Model; 2017 Oct; 77():263-279. PubMed ID: 28903086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quasi-3D Hyperbolic Shear Deformation Theory for the Free Vibration Study of Honeycomb Microplates with Graphene Nanoplatelets-Reinforced Epoxy Skins.
    Arshid H; Khorasani M; Soleimani-Javid Z; Dimitri R; Tornabene F
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33147816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The modeling method for vibration characteristics analysis of composite laminated rotationally stiffened shell.
    Shi D; Zhang H; Ding Y; Yang C; Cheng T
    PLoS One; 2024; 19(6):e0299586. PubMed ID: 38889193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics and length distribution of microtubules under force and confinement.
    Zelinski B; Müller N; Kierfeld J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041918. PubMed ID: 23214626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient wave propagation in the ring stiffened laminated composite cylindrical shells using the method of reverberation ray matrix.
    Liu CC; Li FM; Chen ZB; Yue HH
    J Acoust Soc Am; 2013 Feb; 133(2):770-80. PubMed ID: 23363096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Modified Couple Stress Elasticity for Non-Uniform Composite Laminated Beams Based on the Ritz Formulation.
    Jouneghani FZ; Babamoradi H; Dimitri R; Tornabene F
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of elastic supports on the transient vibroacoustic response of a window caused by sonic booms.
    Ou D; Mak CM
    J Acoust Soc Am; 2011 Aug; 130(2):783-90. PubMed ID: 21877794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.
    Wang YZ; Ding XD; Xiong XM; Zhang JX
    Rev Sci Instrum; 2007 Oct; 78(10):103907. PubMed ID: 17979435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules.
    Sahmani S; Aghdam MM
    Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orthotropic elastic shell model for buckling of microtubules.
    Wang CY; Ru CQ; Mioduchowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):052901. PubMed ID: 17279958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubule circumferential vibrations in cytosol.
    Daneshmand F
    Proc Inst Mech Eng H; 2012 Aug; 226(8):589-99. PubMed ID: 23057232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomolecular motor-driven microtubule translocation in the presence of shear flow: modeling microtubule deflection due to shear.
    Kim T; Meyhöfer E; Hasselbrink EF
    Biomed Microdevices; 2007 Aug; 9(4):501-11. PubMed ID: 17522979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free Vibration Analysis of Closed Moderately Thick Cross-Ply Composite Laminated Cylindrical Shell with Arbitrary Boundary Conditions.
    Shi D; He D; Wang Q; Ma C; Shu H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory.
    Zhang X; Shamsodin M; Wang H; NoormohammadiArani O; Khan AM; Habibi M; Al-Furjan MSH
    J Biomol Struct Dyn; 2021 Jun; 39(9):3128-3143. PubMed ID: 32338161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells.
    Liu YF; Wang YQ
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method.
    Su Z; Jin G
    J Acoust Soc Am; 2016 Nov; 140(5):3925. PubMed ID: 27908089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.