BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26159921)

  • 1. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides.
    Hori S; Yamamoto T; Obika S
    Biochem Biophys Res Commun; 2015 Aug; 464(2):506-11. PubMed ID: 26159921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA.
    Vickers TA; Crooke ST
    Nucleic Acids Res; 2015 Oct; 43(18):8955-63. PubMed ID: 26384424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus.
    Liang XH; Sun H; Nichols JG; Crooke ST
    Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery.
    Lima WF; De Hoyos CL; Liang XH; Crooke ST
    Nucleic Acids Res; 2016 Apr; 44(7):3351-63. PubMed ID: 26843429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination.
    Lai F; Damle SS; Ling KK; Rigo F
    Mol Cell; 2020 Mar; 77(5):1032-1043.e4. PubMed ID: 31924447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms.
    Vickers TA; Crooke ST
    PLoS One; 2014; 9(10):e108625. PubMed ID: 25299183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs.
    Liang XH; Nichols JG; Sun H; Crooke ST
    Nucleic Acids Res; 2018 Jan; 46(1):293-313. PubMed ID: 29165591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides.
    Zhang L; Bernardo KD; Vickers TA; Tian J; Liang XH; Crooke ST
    Nucleic Acid Ther; 2022 Aug; 32(4):280-299. PubMed ID: 35852833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins.
    Zhang L; Vickers TA; Sun H; Liang XH; Crooke ST
    Nucleic Acids Res; 2021 Mar; 49(5):2721-2739. PubMed ID: 33577678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity.
    Liang XH; Nichols JG; De Hoyos CL; Crooke ST
    Nucleic Acids Res; 2020 Sep; 48(17):9840-9858. PubMed ID: 32870273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis.
    Vickers TA; Koo S; Bennett CF; Crooke ST; Dean NM; Baker BF
    J Biol Chem; 2003 Feb; 278(9):7108-18. PubMed ID: 12500975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation of stable hepadnaviral mRNA cleavage fragments induced by the action of phosphorothioate-modified antisense oligodeoxynucleotides.
    Hasselblatt P; Hockenjos B; Thoma C; Blum HE; Offensperger WB
    Nucleic Acids Res; 2005; 33(1):114-25. PubMed ID: 15640448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and selective knockdown of small non-coding RNAs.
    Liang XH; Shen W; Crooke ST
    Methods Mol Biol; 2015; 1296():203-11. PubMed ID: 25791603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1.
    Vickers TA; Rahdar M; Prakash TP; Crooke ST
    Nucleic Acids Res; 2019 Nov; 47(20):10865-10880. PubMed ID: 31495875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the roles of the 5' exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication.
    Li Y; Yamane D; Lemon SM
    J Virol; 2015 May; 89(9):4857-65. PubMed ID: 25673723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides.
    ten Asbroek AL; van Groenigen M; Nooij M; Baas F
    Eur J Biochem; 2002 Jan; 269(2):583-92. PubMed ID: 11856317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
    Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S
    Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway.
    Liang XH; Nichols JG; Hsu CW; Vickers TA; Crooke ST
    Nucleic Acids Res; 2019 Jul; 47(13):6900-6916. PubMed ID: 31165876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.