BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 26160164)

  • 1. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.
    Wang X; Lin P; Ho JWK
    BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering cis-regulatory sequence requirements for context-specific transcription factor binding.
    Yáñez-Cuna JO; Dinh HQ; Kvon EZ; Shlyueva D; Stark A
    Genome Res; 2012 Oct; 22(10):2018-30. PubMed ID: 22534400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling determinants of transcription factor binding outside the core binding site.
    Levo M; Zalckvar E; Sharon E; Dantas Machado AC; Kalma Y; Lotam-Pompan M; Weinberger A; Yakhini Z; Rohs R; Segal E
    Genome Res; 2015 Jul; 25(7):1018-29. PubMed ID: 25762553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSMC: Combining Parallel Gibbs Sampling with Maximal Cliques for Hunting DNA Motif.
    Pei C; Wang SL; Fang J; Zhang W
    J Comput Biol; 2017 Dec; 24(12):1243-1253. PubMed ID: 29116820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information content differentiates enhancers from silencers in mouse photoreceptors.
    Friedman RZ; Granas DM; Myers CA; Corbo JC; Cohen BA; White MA
    Elife; 2021 Sep; 10():. PubMed ID: 34486522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-SELECT reveals sequence non-specific contribution of DNA shape to transcription factor binding in vitro.
    Pal S; Hoinka J; Przytycka TM
    Nucleic Acids Res; 2019 Jul; 47(13):6632-6641. PubMed ID: 31226207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.