BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26160442)

  • 1. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction.
    Ju CH; Wang XP; Gao CY; Zhang SX; Ma XH; Liu C
    Cell Physiol Biochem; 2015; 36(4):1305-15. PubMed ID: 26160442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective role of ACE2-Ang-(1-7)-Mas in myocardial fibrosis by downregulating K
    Wang LP; Fan SJ; Li SM; Wang XJ; Gao JL; Yang XH
    Pflugers Arch; 2016 Nov; 468(11-12):2041-2051. PubMed ID: 27592222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The KCa3.1 blocker TRAM-34 inhibits proliferation of fibroblasts in paraquat-induced pulmonary fibrosis.
    Xie H; Lu J; Zhu Y; Meng X; Wang R
    Toxicol Lett; 2018 Oct; 295():408-415. PubMed ID: 30036685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis.
    Anumanthan G; Gupta S; Fink MK; Hesemann NP; Bowles DK; McDaniel LM; Muhammad M; Mohan RR
    PLoS One; 2018; 13(3):e0192145. PubMed ID: 29554088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leonurine Attenuates Myocardial Fibrosis Through Upregulation of miR-29a-3p in Mice Post-myocardial Infarction.
    Wang R; Peng L; Lv D; Shang F; Yan J; Li G; Li D; Ouyang J; Yang J
    J Cardiovasc Pharmacol; 2021 Feb; 77(2):189-199. PubMed ID: 33235025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K
    She G; Ren YJ; Wang Y; Hou MC; Wang HF; Gou W; Lai BC; Lei T; Du XJ; Deng XL
    J Am Heart Assoc; 2019 Jan; 8(1):e010418. PubMed ID: 30563389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress promotes myocardial fibrosis by upregulating K
    Wang LP; Fan SJ; Li SM; Wang XJ; Gao JL; Yang XH
    Pflugers Arch; 2017 Sep; 469(9):1061-1071. PubMed ID: 28455747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis.
    Huang C; Shen S; Ma Q; Gill A; Pollock CA; Chen XM
    Nephrol Dial Transplant; 2014 Feb; 29(2):313-24. PubMed ID: 24166472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of KCa3.1 channels in cardiac fibrosis induced by pressure overload in rats.
    Zhao LM; Wang LP; Wang HF; Ma XZ; Zhou DX; Deng XL
    Pflugers Arch; 2015 Nov; 467(11):2275-85. PubMed ID: 25715999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Pro)renin Receptor Blockade Ameliorates Cardiac Injury and Remodeling and Improves Function After Myocardial Infarction.
    Ellmers LJ; Rademaker MT; Charles CJ; Yandle TG; Richards AM
    J Card Fail; 2016 Jan; 22(1):64-72. PubMed ID: 26362519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K⁺-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells.
    Freise C; Heldwein S; Erben U; Hoyer J; Köhler R; Jöhrens K; Patsenker E; Ruehl M; Seehofer D; Stickel F; Somasundaram R
    Liver Int; 2015 Apr; 35(4):1244-52. PubMed ID: 25212242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockade of KCa3.1: A novel target to treat TGF-β1 induced conjunctival fibrosis.
    Anumanthan G; Wilson PJ; Tripathi R; Hesemann NP; Mohan RR
    Exp Eye Res; 2018 Feb; 167():140-144. PubMed ID: 29242028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury.
    Chen CL; Liao JW; Hu OY; Pao LH
    Arch Toxicol; 2016 Sep; 90(9):2249-2260. PubMed ID: 26438401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.
    Wang LP; Wang Y; Zhao LM; Li GR; Deng XL
    Biochem Pharmacol; 2013 May; 85(10):1486-94. PubMed ID: 23500546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted inhibition of KCa3.1 channel attenuates airway inflammation and remodeling in allergic asthma.
    Yu ZH; Xu JR; Wang YX; Xu GN; Xu ZP; Yang K; Wu DZ; Cui YY; Chen HZ
    Am J Respir Cell Mol Biol; 2013 Jun; 48(6):685-93. PubMed ID: 23492185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway.
    Li X; Xiang N; Wang Z
    Biosci Biotechnol Biochem; 2020 Nov; 84(11):2199-2206. PubMed ID: 32706304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in cell-type-specific responses to angiotensin II explain cardiac remodeling differences in C57BL/6 mouse substrains.
    Cardin S; Scott-Boyer MP; Praktiknjo S; Jeidane S; Picard S; Reudelhuber TL; Deschepper CF
    Hypertension; 2014 Nov; 64(5):1040-6. PubMed ID: 25069667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of Myostatin Improves Cardiac Function Following Myocardial Infarction.
    Lim S; McMahon CD; Matthews KG; Devlin GP; Elston MS; Conaglen JV
    Heart Lung Circ; 2018 Jun; 27(6):693-701. PubMed ID: 28690022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats.
    Wang G; Wang R; Ruan Z; Liu L; Li Y; Zhu L
    Biosci Rep; 2020 Sep; 40(9):. PubMed ID: 32885809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Qiliqiangxin Attenuates Adverse Cardiac Remodeling after Myocardial Infarction in Ovariectomized Mice via Activation of PPARγ.
    Shen S; Jiang H; Bei Y; Zhang J; Zhang H; Zhu H; Zhang C; Yao W; Wei C; Shang H; Li X
    Cell Physiol Biochem; 2017; 42(3):876-888. PubMed ID: 28647730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.