These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26160629)

  • 1. Ongoing Methodological Approaches to Improve the In Vivo Assessment of Local Coronary Blood Flow and Endothelial Shear Stress: The Devil Is in the Details.
    Stone PH; Coskun AU; Prati F
    J Am Coll Cardiol; 2015 Jul; 66(2):136-8. PubMed ID: 26160629
    [No Abstract]   [Full Text] [Related]  

  • 2. Impact of Side Branch Modeling on Computation of Endothelial Shear Stress in Coronary Artery Disease: Coronary Tree Reconstruction by Fusion of 3D Angiography and OCT.
    Li Y; Gutiérrez-Chico JL; Holm NR; Yang W; Hebsgaard L; Christiansen EH; Mæng M; Lassen JF; Yan F; Reiber JH; Tu S
    J Am Coll Cardiol; 2015 Jul; 66(2):125-35. PubMed ID: 26160628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.
    Vergallo R; Papafaklis MI; Yonetsu T; Bourantas CV; Andreou I; Wang Z; Fujimoto JG; McNulty I; Lee H; Biasucci LM; Crea F; Feldman CL; Michalis LK; Stone PH; Jang IK
    Circ Cardiovasc Imaging; 2014 Nov; 7(6):905-11. PubMed ID: 25190591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans.
    Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK
    EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds.
    Tenekecioglu E; Sotomi Y; Torii R; Bourantas C; Miyazaki Y; Collet C; Crake T; Su S; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2017 Sep; 33(9):1313-1322. PubMed ID: 28365819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of strut thickness on shear stress distribution in a preclinical model.
    Tenekecioglu E; Torii R; Bourantas C; Miyazaki Y; Collet C; Al-Lameé R; Al-Lameé K; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2017 Nov; 33(11):1675-1676. PubMed ID: 28567706
    [No Abstract]   [Full Text] [Related]  

  • 7. Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy.
    Gogas BD; Yang B; Piccinelli M; Giddens DP; King SB; Kereiakes DJ; Ellis SG; Stone GW; Veneziani A; Samady H
    JACC Cardiovasc Interv; 2016 Mar; 9(5):501-3. PubMed ID: 26965940
    [No Abstract]   [Full Text] [Related]  

  • 8. Advances in three-dimensional coronary imaging and computational fluid dynamics: is virtual fractional flow reserve more than just a pretty picture?
    Poon EK; Hayat U; Thondapu V; Ooi AS; Ul Haq MA; Moore S; Foin N; Tu S; Chin C; Monty JP; Marusic I; Barlis P
    Coron Artery Dis; 2015 Aug; 26 Suppl 1():e43-54. PubMed ID: 26247271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of endothelial shear stress in patients with mild or intermediate coronary stenoses using coronary computed tomography angiography: comparison with invasive coronary angiography.
    Huang D; Muramatsu T; Li Y; Yang W; Nagahara Y; Chu M; Kitslaar P; Sarai M; Ozaki Y; Chatzizisis YS; Yan F; Reiber JHC; Wu R; Pu J; Tu S
    Int J Cardiovasc Imaging; 2017 Jul; 33(7):1101-1110. PubMed ID: 27796815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations.
    Antoniadis AP; Giannopoulos AA; Wentzel JJ; Joner M; Giannoglou GD; Virmani R; Chatzizisis YS
    EuroIntervention; 2015; 11 Suppl V():V18-22. PubMed ID: 25983161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of fibrous cap thickness and wall shear stress to assess plaque vulnerability in coronary arteries: a pilot study.
    Zahnd G; Schrauwen J; Karanasos A; Regar E; Niessen W; van Walsum T; Gijsen F
    Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1779-90. PubMed ID: 27236652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the effect of side branches in endothelial shear stress estimates.
    Giannopoulos AA; Chatzizisis YS; Maurovich-Horvat P; Antoniadis AP; Hoffmann U; Steigner ML; Rybicki FJ; Mitsouras D
    Atherosclerosis; 2016 Aug; 251():213-218. PubMed ID: 27372207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns.
    Bourantas CV; Papafaklis MI; Garcia-Garcia HM; Farooq V; Diletti R; Muramatsu T; Zhang Y; Kalatzis FG; Naka KK; Fotiadis DI; Onuma Y; Michalis LK; Serruys PW
    JACC Cardiovasc Interv; 2014 Jan; 7(1):100-1. PubMed ID: 24456718
    [No Abstract]   [Full Text] [Related]  

  • 14. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K
    Biomed Eng Online; 2006 Jun; 5():39. PubMed ID: 16774680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions.
    Shanmugavelayudam SK; Rubenstein DA; Yin W
    J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA.
    Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD
    Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical and functional assessment of Tryton bifurcation stent before and after final kissing balloon dilatation: Evaluations by three-dimensional coronary angiography, optical coherence tomography imaging and fractional flow reserve.
    Pyxaras SA; Toth GG; Di Gioia G; Ughi GJ; Tu S; Rusinaru D; Adriaenssens T; Reiber JHC; Leon MB; Bax JJ; Wijns W
    Catheter Cardiovasc Interv; 2017 Jul; 90(1):E1-E10. PubMed ID: 27567002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans.
    Coskun AU; Yeghiazarians Y; Kinlay S; Clark ME; Ilegbusi OJ; Wahle A; Sonka M; Popma JJ; Kuntz RE; Feldman CL; Stone PH
    Catheter Cardiovasc Interv; 2003 Sep; 60(1):67-78. PubMed ID: 12929106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erosion of Thin-Cap Fibroatheroma in an Area of Low Endothelial Shear Stress: Anatomy and Local Hemodynamic Environment Dictate Outcomes.
    Giannopoulos AA; Antoniadis AP; Croce K; Chatzizisis YS
    JACC Cardiovasc Interv; 2016 Apr; 9(8):e77-e78. PubMed ID: 27017369
    [No Abstract]   [Full Text] [Related]  

  • 20. Biomechanical assessment of fully bioresorbable devices.
    Gogas BD; King SB; Timmins LH; Passerini T; Piccinelli M; Veneziani A; Kim S; Molony DS; Giddens DP; Serruys PW; Samady H
    JACC Cardiovasc Interv; 2013 Jul; 6(7):760-1. PubMed ID: 23866188
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.