These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26161398)

  • 1. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback.
    Afzal MR; Oh MK; Lee CH; Park YS; Yoon J
    Biomed Res Int; 2015; 2015():375638. PubMed ID: 26161398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the effects of using integrated haptic feedback for gait rehabilitation of stroke patients.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1055-1060. PubMed ID: 28813961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    J Neuroeng Rehabil; 2018 Apr; 15(1):33. PubMed ID: 29661237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Vibrotactile Biofeedback Coding Schemes on Gait Symmetry Training of Individuals With Stroke.
    Afzal MR; Lee H; Eizad A; Lee CH; Oh MK; Yoon J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1617-1625. PubMed ID: 31247557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate Effects of Force Feedback and Plantar Somatosensory Stimuli on Inter-limb Coordination During Perturbed Walking.
    Zhang Y; Nolan KJ; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():252-257. PubMed ID: 31374638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of Vibrotactile Biofeedback Strategies to Induce Stance Time Asymmetries.
    Escamilla-Nunez R; Sivasambu H; Andrysek J
    Can Prosthet Orthot J; 2022; 5(1):36744. PubMed ID: 37614481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time biofeedback device for gait rehabilitation of post-stroke patients.
    Khoo IH; Marayong P; Krishnan V; Balagtas M; Rojas O; Leyba K
    Biomed Eng Lett; 2017 Nov; 7(4):287-298. PubMed ID: 30603178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis.
    Den Otter AR; Geurts AC; Mulder T; Duysens J
    Clin Neurophysiol; 2006 Jan; 117(1):4-15. PubMed ID: 16337186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial.
    Mansfield A; Wong JS; Bryce J; Brunton K; Inness EL; Knorr S; Jones S; Taati B; McIlroy WE
    Neurorehabil Neural Repair; 2015 Oct; 29(9):847-57. PubMed ID: 25605632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core stabilization exercise with real-time feedback for chronic hemiparetic stroke: a pilot randomized controlled trials.
    Chung E; Lee BH; Hwang S
    Restor Neurol Neurosci; 2014; 32(2):313-21. PubMed ID: 24398718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke.
    Prajapati SK; Gage WH; Brooks D; Black SE; McIlroy WE
    Neurorehabil Neural Repair; 2011 Jan; 25(1):6-14. PubMed ID: 20829413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum walking speed is a key determinant of long distance walking function after stroke.
    Awad LN; Reisman DS; Wright TR; Roos MA; Binder-Macleod SA
    Top Stroke Rehabil; 2014; 21(6):502-9. PubMed ID: 25467398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor enhancement with a mixed reality system for balance and mobility rehabilitation.
    Fung J; Perez CF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6753-7. PubMed ID: 22255889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report.
    Silver KH; Macko RF; Forrester LW; Goldberg AP; Smith GV
    Neurorehabil Neural Repair; 2000; 14(1):65-71. PubMed ID: 11228951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of walking speed by changing optic flow in persons with stroke.
    Lamontagne A; Fung J; McFadyen BJ; Faubert J
    J Neuroeng Rehabil; 2007 Jun; 4():22. PubMed ID: 17594501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the effects of visual deprivation and regular body weight support treadmill training on improving over-ground walking of stroke patients: a multiple baseline single subject design.
    Kim JS; Kang SY; Jeon HS
    Physiother Theory Pract; 2015; 31(7):466-73. PubMed ID: 26395826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning-based treadmill training improves turning performance and gait symmetry after stroke.
    Chen IH; Yang YR; Chan RC; Wang RY
    Neurorehabil Neural Repair; 2014 Jan; 28(1):45-55. PubMed ID: 23897905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in gait symmetry and velocity after stroke: a cross-sectional study from weeks to years after stroke.
    Patterson KK; Gage WH; Brooks D; Black SE; McIlroy WE
    Neurorehabil Neural Repair; 2010; 24(9):783-90. PubMed ID: 20841442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.