These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26161542)
1. Living on the edge: transfer and traffic of E. coli in a confined flow. Figueroa-Morales N; Leonardo Miño G; Rivera A; Caballero R; Clément E; Altshuler E; Lindner A Soft Matter; 2015 Aug; 11(31):6284-93. PubMed ID: 26161542 [TBL] [Abstract][Full Text] [Related]
2. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface. Molaei M; Sheng J Sci Rep; 2016 Oct; 6():35290. PubMed ID: 27752062 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Shum H; Gaffney EA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813 [TBL] [Abstract][Full Text] [Related]
4. Separation of motile bacteria using drift velocity in a microchannel. Ishikawa T; Shioiri T; Numayama-Tsuruta K; Ueno H; Imai Y; Yamaguchi T Lab Chip; 2014 Mar; 14(5):1023-32. PubMed ID: 24448484 [TBL] [Abstract][Full Text] [Related]
5. Impact of external flow on the dynamics of swimming microorganisms near surfaces. Chilukuri S; Collins CH; Underhill PT J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066 [TBL] [Abstract][Full Text] [Related]
6. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment. Zhang C; Liao Q; Chen R; Zhu X Biochem Biophys Res Commun; 2015 Jun; 461(4):671-6. PubMed ID: 25918022 [TBL] [Abstract][Full Text] [Related]
7. Swimming of Buoyant Bacteria in Quiescent Medium and Shear Flows. Zheng H; Yan N; Feng W; Liu Y; Luo H; Jing G Langmuir; 2023 Mar; 39(12):4224-4232. PubMed ID: 36926901 [TBL] [Abstract][Full Text] [Related]
8. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip. Hu J; Wysocki A; Winkler RG; Gompper G Sci Rep; 2015 May; 5():9586. PubMed ID: 25993019 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamic entrapment of bacteria swimming near a solid surface. Giacché D; Ishikawa T; Yamaguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056309. PubMed ID: 21230578 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic Trapping of Swimming Bacteria by Convex Walls. Sipos O; Nagy K; Di Leonardo R; Galajda P Phys Rev Lett; 2015 Jun; 114(25):258104. PubMed ID: 26197146 [TBL] [Abstract][Full Text] [Related]
11. Direct upstream motility in Escherichia coli. Kaya T; Koser H Biophys J; 2012 Apr; 102(7):1514-23. PubMed ID: 22500751 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Hill J; Kalkanci O; McMurry JL; Koser H Phys Rev Lett; 2007 Feb; 98(6):068101. PubMed ID: 17358984 [TBL] [Abstract][Full Text] [Related]
13. Nano-engineered living bacterial motors for active microfluidic mixing. Al-Fandi M; Jaradat MA; Fandi K; Beech JP; Tegenfeldt JO; Yih TC IET Nanobiotechnol; 2010 Sep; 4(3):61-71. PubMed ID: 20726672 [TBL] [Abstract][Full Text] [Related]
14. Coastal loading and transport of Escherichia coli at an embayed beach in Lake Michigan. Ge Z; Nevers MB; Schwab DJ; Whitman RL Environ Sci Technol; 2010 Sep; 44(17):6731-7. PubMed ID: 20687542 [TBL] [Abstract][Full Text] [Related]
15. Patterns of bacterial motility in microfluidics-confining environments. Tokárová V; Sudalaiyadum Perumal A; Nayak M; Shum H; Kašpar O; Rajendran K; Mohammadi M; Tremblay C; Gaffney EA; Martel S; Nicolau DV; Nicolau DV Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875583 [TBL] [Abstract][Full Text] [Related]
16. Transport of self-propelling bacteria in micro-channel flow. Costanzo A; Di Leonardo R; Ruocco G; Angelani L J Phys Condens Matter; 2012 Feb; 24(6):065101. PubMed ID: 22231718 [TBL] [Abstract][Full Text] [Related]
17. Wall accumulation of bacteria with different motility patterns. Sartori P; Chiarello E; Jayaswal G; Pierno M; Mistura G; Brun P; Tiribocchi A; Orlandini E Phys Rev E; 2018 Feb; 97(2-1):022610. PubMed ID: 29548231 [TBL] [Abstract][Full Text] [Related]
18. Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil. Martins JM; Majdalani S; Vitorge E; Desaunay A; Navel A; Guiné V; Daïan JF; Vince E; Denis H; Gaudet JP Environ Sci Process Impacts; 2013 Feb; 15(2):347-56. PubMed ID: 25208699 [TBL] [Abstract][Full Text] [Related]
19. Buoyant plumes from solute gradients generated by non-motile Escherichia coli. Benoit MR; Brown RB; Todd P; Nelson ES; Klaus DM Phys Biol; 2008 Dec; 5(4):046007. PubMed ID: 19075355 [TBL] [Abstract][Full Text] [Related]
20. Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis. Yakirevich A; Pachepsky YA; Guber AK; Gish TJ; Shelton DR; Cho KH Water Res; 2013 May; 47(8):2676-88. PubMed ID: 23521976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]