These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26161588)

  • 1. Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement.
    Maryn Y; Zarowski A
    Am J Speech Lang Pathol; 2015 Nov; 24(4):608-18. PubMed ID: 26161588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and characterization of a portable sound booth for onsite voice recording.
    Jackson CE; Tarvin JT; Richardson PA; Watts SA; Castellanos PF
    Med Probl Perform Art; 2011 Sep; 26(3):140-5. PubMed ID: 21987068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Method to Obtain Basic Acoustic Measures From Video Recordings as Subtitles.
    Kumar SP; Švec JG
    J Speech Lang Hear Res; 2018 Sep; 61(9):2196-2204. PubMed ID: 30167666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microprocessor-based speech processing system.
    Guillemin BJ; Nguyen DT
    J Speech Hear Res; 1984 Jun; 27(2):311-7. PubMed ID: 6738043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodological study of perturbation and additive noise in synthetically generated voice signals.
    Hillenbrand J
    J Speech Hear Res; 1987 Dec; 30(4):448-61. PubMed ID: 2961932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The self-to-other ratio applied as a phonation detector for voice accumulation.
    Granqvist S
    Logoped Phoniatr Vocol; 2003; 28(2):71-80. PubMed ID: 14582830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative acoustic analysis of voice production by near-total laryngectomy and normal laryngeal speakers.
    Hoasjoe DK; Martin GF; Doyle PC; Wong FS
    J Otolaryngol; 1992 Feb; 21(1):39-43. PubMed ID: 1564748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitioning from analog to digital audio recording in childhood speech sound disorders.
    Shriberg LD; McSweeny JL; Anderson BE; Campbell TF; Chial MR; Green JR; Hauner KK; Moore CA; Rusiewicz HL; Wilson DL
    Clin Linguist Phon; 2005 Jun; 19(4):335-59. PubMed ID: 16019779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speaking fundamental frequency and phonation time during work and leisure time in vocally healthy preschool teachers measured with a voice accumulator.
    Szabo Portela A; Hammarberg B; Södersten M
    Folia Phoniatr Logop; 2013; 65(2):84-90. PubMed ID: 24107540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of bone conduction microphone placement on intensity and spectrum of transmitted speech items.
    Tran PK; Letowski TR; McBride ME
    J Acoust Soc Am; 2013 Jun; 133(6):3900-8. PubMed ID: 23742344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of a head-mounted microphone signal into calibrated SPL units.
    Winholtz WS; Titze IR
    J Voice; 1997 Dec; 11(4):417-21. PubMed ID: 9422275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of Sound Level Meter Apps in the Clinical Setting.
    Fava G; Oliveira G; Baglione M; Pimpinella M; Spitzer JB
    Am J Speech Lang Pathol; 2016 Feb; 25(1):14-28. PubMed ID: 26882093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Voice Use in Patients With Voice Disorders and Vocally Healthy Speakers Based on 2 Days Voice Accumulator Information From a Database.
    Södersten M; Salomão GL; McAllister A; Ternström S
    J Voice; 2015 Sep; 29(5):646.e1-9. PubMed ID: 26073776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guidelines for selecting microphones for human voice production research.
    Svec JG; Granqvist S
    Am J Speech Lang Pathol; 2010 Nov; 19(4):356-68. PubMed ID: 20601621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of the results of acoustic analysis of the voice recorded by different methods].
    Chernobel'skiĭ SI
    Vestn Otorinolaringol; 2014; (1):41-3. PubMed ID: 24577031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparability of modern recording devices for speech analysis: smartphone, landline, laptop, and hard disc recorder.
    Vogel AP; Rosen KM; Morgan AT; Reilly S
    Folia Phoniatr Logop; 2014; 66(6):244-50. PubMed ID: 25676365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate acoustic effects of straw phonation exercises in subjects with dysphonic voices.
    Guzman M; Higueras D; Fincheira C; Muñoz D; Guajardo C; Dowdall J
    Logoped Phoniatr Vocol; 2013 Apr; 38(1):35-45. PubMed ID: 23350916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.