BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26161727)

  • 1. Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation.
    Saba SA; Mousavi MP; Bühlmann P; Hillmyer MA
    J Am Chem Soc; 2015 Jul; 137(28):8896-9. PubMed ID: 26161727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework.
    Guo X; Wang R; Yu H; Zhu Y; Nakanishi K; Kanamori K; Yang H
    Dalton Trans; 2015 Aug; 44(30):13592-601. PubMed ID: 26140683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous polymer monoliths for small molecule separations: advancements and limitations.
    Nischang I; Teasdale I; Brüggemann O
    Anal Bioanal Chem; 2011 Jun; 400(8):2289-304. PubMed ID: 21190103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured Polymer Monoliths for Biomedical Delivery Applications.
    Xie Y; Hillmyer MA
    ACS Appl Bio Mater; 2020 May; 3(5):3236-3247. PubMed ID: 35025366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations.
    Nakanishi K; Tanaka N
    Acc Chem Res; 2007 Sep; 40(9):863-73. PubMed ID: 17650924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.
    Seo M; Kim S; Oh J; Kim SJ; Hillmyer MA
    J Am Chem Soc; 2015 Jan; 137(2):600-3. PubMed ID: 25551291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation.
    Chopade SA; So S; Hillmyer MA; Lodge TP
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6200-10. PubMed ID: 26927732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Porous Polystyrene Monoliths from PolyHIPE.
    Yang X; Tan L; Xia L; Wood CD; Tan B
    Macromol Rapid Commun; 2015 Sep; 36(17):1553-8. PubMed ID: 26178423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance.
    Nischang I
    J Chromatogr A; 2013 Apr; 1287():39-58. PubMed ID: 23261286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.
    Konishi J; Fujita K; Nakanishi K; Hirao K; Morisato K; Miyazaki S; Ohira M
    J Chromatogr A; 2009 Oct; 1216(44):7375-83. PubMed ID: 19580973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically Porous Carbon Materials from Self-Assembled Block Copolymer/Dopamine Mixtures.
    Septani CM; Wang CA; Jeng US; Su YC; Ko BT; Sun YS
    Langmuir; 2020 Oct; 36(40):11754-11764. PubMed ID: 32955261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and photocatalytic activity of titania monoliths prepared with controlled macro- and mesopore structure.
    Drisko GL; Zelcer A; Wang X; Caruso RA; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4123-30. PubMed ID: 22775206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation.
    Seo M; Hillmyer MA
    Science; 2012 Jun; 336(6087):1422-5. PubMed ID: 22700925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.
    Xin Y; Xiong Q; Bai Q; Miyamoto M; Li C; Shen Y; Uyama H
    Carbohydr Polym; 2017 Feb; 157():429-437. PubMed ID: 27987947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New monolithic capillary columns with well-defined macropores based on poly(styrene-co-divinylbenzene).
    Hasegawa G; Kanamori K; Ishizuka N; Nakanishi K
    ACS Appl Mater Interfaces; 2012 May; 4(5):2343-7. PubMed ID: 22530588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicontinuous Ion-Exchange Materials through Polymerization-Induced Microphase Separation.
    Goldfeld DJ; Silver ES; Valdez JM; Hillmyer MA
    ACS Macro Lett; 2021 Jan; 10(1):60-64. PubMed ID: 35548992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tricontinuous Nanostructured Polymers via Polymerization-Induced Microphase Separation.
    Saba SA; Lee B; Hillmyer MA
    ACS Macro Lett; 2017 Nov; 6(11):1232-1236. PubMed ID: 35650776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.