BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26161727)

  • 21. Preparation of a hierarchically porous AlPO
    Li W; Zhu Y; Guo X; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2013 Aug; 14(4):045007. PubMed ID: 27877600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrophobic polymer monoliths as novel phase separators: application in continuous liquid-liquid extraction systems.
    Peroni D; Vanhoutte D; Vilaplana F; Schoenmakers P; de Koning S; Janssen HG
    Anal Chim Acta; 2012 Mar; 720():63-70. PubMed ID: 22365122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyper-cross-linked polymers with controlled multiscale porosity via polymerization-induced microphase separation within high internal phase emulsion.
    Park J; Kim K; Seo M
    Chem Commun (Camb); 2018 Jul; 54(57):7908-7911. PubMed ID: 29951671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography.
    Stoeckel D; Kübel C; Hormann K; Höltzel A; Smarsly BM; Tallarek U
    Langmuir; 2014 Aug; 30(30):9022-7. PubMed ID: 25036976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Pot Synthesis of Hierarchically Macro- and Mesoporous Carbon Materials with Graded Porosity.
    Hesse SA; Werner JG; Wiesner U
    ACS Macro Lett; 2015 May; 4(5):477-482. PubMed ID: 35596287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile Fabrication of Hierarchically Porous Boronic Acid Group-Functionalized Monoliths With Optical Activity for Recognizing Glucose With Different Conformation.
    Wang Y; Zhang L; Hsu YI; Asoh TA; Uyama H
    Front Chem; 2022; 10():939368. PubMed ID: 35755261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoinitiated Polymerization-Induced Microphase Separation for the Preparation of Nanoporous Polymer Films.
    Oh J; Seo M
    ACS Macro Lett; 2015 Nov; 4(11):1244-1248. PubMed ID: 35614821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation.
    Guo X; Song J; Lvlin Y; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2015 Apr; 16(2):025003. PubMed ID: 27877772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological Properties of Methacrylate-Based Polymer Monoliths: From Gel Porosity to Macroscopic Inhomogeneities.
    Müllner T; Zankel A; Höltzel A; Svec F; Tallarek U
    Langmuir; 2017 Mar; 33(9):2205-2214. PubMed ID: 28186759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity.
    Stoeckel D; Kübel C; Loeh MO; Smarsly BM; Tallarek U
    Langmuir; 2015 Jul; 31(26):7391-400. PubMed ID: 25654337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive study of the macropore and mesopore size distributions in polymer monoliths using complementary physical characterization techniques and liquid chromatography.
    Wouters S; Hauffman T; Mittelmeijer-Hazeleger MC; Rothenberg G; Desmet G; Baron GV; Eeltink S
    J Sep Sci; 2016 Dec; 39(23):4492-4501. PubMed ID: 27709789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths.
    Tokudome Y; Nakanishi K; Kanamori K; Fujita K; Akamatsu H; Hanada T
    J Colloid Interface Sci; 2009 Oct; 338(2):506-13. PubMed ID: 19646712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides.
    Li Y; Tolley HD; Lee ML
    Anal Chem; 2009 Jun; 81(11):4406-13. PubMed ID: 19405517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential.
    Henning LM; Müller JT; Smales GJ; Pauw BR; Schmidt J; Bekheet MF; Gurlo A; Simon U
    Nanoscale Adv; 2022 Sep; 4(18):3892-3908. PubMed ID: 36133322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchically structured materials from block polymer confinement within bicontinuous microemulsion-derived nanoporous polyethylene.
    Jones BH; Lodge TP
    ACS Nano; 2011 Nov; 5(11):8914-27. PubMed ID: 21992221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.
    Moitra N; Fukumoto S; Reboul J; Sumida K; Zhu Y; Nakanishi K; Furukawa S; Kitagawa S; Kanamori K
    Chem Commun (Camb); 2015 Feb; 51(17):3511-4. PubMed ID: 25572361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials.
    Lee K; Corrigan N; Boyer C
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307329. PubMed ID: 37429822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials.
    Choi M; Kleitz F; Liu D; Lee HY; Ahn WS; Ryoo R
    J Am Chem Soc; 2005 Feb; 127(6):1924-32. PubMed ID: 15701027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal.
    Su H; Chong Y; Wang J; Long D; Qiao W; Ling L
    J Colloid Interface Sci; 2018 Jan; 510():77-85. PubMed ID: 28942067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks.
    Hwang J; Jo C; Hur K; Lim J; Kim S; Lee J
    J Am Chem Soc; 2014 Nov; 136(45):16066-72. PubMed ID: 25338137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.