These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26161727)

  • 61. Nanoporous polymer monoliths as adsorptive supports for robust photocatalyst of Degussa P25.
    Zhang Y; Wei S; Zhang H; Liu S; Nawaz F; Xiao FS
    J Colloid Interface Sci; 2009 Nov; 339(2):434-8. PubMed ID: 19709667
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-standing zeolite foam monoliths with hierarchical micro-meso-macroporous structures.
    Chen J; Liu F; Li Y; Dou Y; Liu S; Xiao L
    R Soc Open Sci; 2020 Aug; 7(8):200981. PubMed ID: 32968534
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analyses of synthetic antioxidants by capillary electrochromatography using poly(styrene-divinylbenzene-lauryl methacrylate) monolith.
    Huang HY; Cheng YJ; Lin CL
    Talanta; 2010 Sep; 82(4):1426-33. PubMed ID: 20801351
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preparation and characterization of V-shaped PS-b-PEO brushes anchored on planar gold substrate through the trithiocarbonate junction group.
    Wang ZL; Xu JT; Du BY; Fan ZQ
    J Colloid Interface Sci; 2012 Oct; 384(1):29-37. PubMed ID: 22832097
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Control of Ion Transport in Sulfonated Mesoporous Polymer Membranes.
    Jeon C; Han JJ; Seo M
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40854-40862. PubMed ID: 30384592
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hierarchically structured titania films prepared by polymer/colloidal templating.
    Kaune G; Memesa M; Meier R; Ruderer MA; Diethert A; Roth SV; D'Acunzi M; Gutmann JS; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2862-9. PubMed ID: 20356168
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions.
    Byström E; Viklund C; Irgum K
    J Sep Sci; 2010 Feb; 33(2):191-9. PubMed ID: 20087873
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system.
    Kanamori K; Kodera Y; Hayase G; Nakanishi K; Hanada T
    J Colloid Interface Sci; 2011 May; 357(2):336-44. PubMed ID: 21377166
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inorganic monoliths in separation science: a review.
    Walsh Z; Paull B; Macka M
    Anal Chim Acta; 2012 Oct; 750():28-47. PubMed ID: 23062427
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry.
    Nordman N; Barrios-Lopez B; Laurén S; Suvanto P; Kotiaho T; Franssila S; Kostiainen R; Sikanen T
    Electrophoresis; 2015 Feb; 36(3):428-32. PubMed ID: 25043750
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation.
    Lu X; Kanamori K; Nakanishi K
    Natl Sci Rev; 2020 Nov; 7(11):1656-1666. PubMed ID: 34691501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Porous Polystyrene Monoliths Prepared from
    Utroša P; Žagar E; Kovačič S; Pahovnik D
    Macromolecules; 2019 Feb; 52(3):819-826. PubMed ID: 31496541
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pore size and volume effects on the incorporation of polymer into macro- and mesoporous zirconium titanium oxide membranes.
    Drisko GL; Cao L; Kimling MC; Harrisson S; Luca V; Caruso RA
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2893-901. PubMed ID: 20356172
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis of Porous Carbon Monoliths Using Hard Templates.
    Klepel O; Danneberg N; Dräger M; Erlitz M; Taubert M
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773338
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns.
    Greiderer A; Trojer L; Huck CW; Bonn GK
    J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates.
    Ghanem A; Ahmed M; Ishii H; Ikegami T
    Talanta; 2015 Jan; 132():301-14. PubMed ID: 25476312
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation.
    Wang Y; Wang B; Wang J; Ren Y; Xuan C; Liu C; Shen C
    J Hazard Mater; 2018 Feb; 344():849-856. PubMed ID: 29190582
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes.
    Sattayasamitsathit S; Gu Y; Kaufmann K; Minteer S; Polsky R; Wang J
    Nanoscale; 2013 Sep; 5(17):7849-54. PubMed ID: 23846732
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation.
    Cao Y; Han W; Pu Z; Wang X; Wang B; Liu C; Uyama H; Shen C
    RSC Adv; 2020 Jul; 10(44):26319-26325. PubMed ID: 35519741
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions.
    Sušec M; Ligon SC; Stampfl J; Liska R; Krajnc P
    Macromol Rapid Commun; 2013 Jun; 34(11):938-43. PubMed ID: 23606606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.