These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26161906)

  • 1. Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance.
    Wang H; Jian G; Zhou W; DeLisio JB; Lee VT; Zachariah MR
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17363-70. PubMed ID: 26161906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of metal iodates from an energetic salt.
    Shancita I; Miller KK; Silverstein PD; Kalman J; Pantoya ML
    RSC Adv; 2020 Apr; 10(24):14403-14409. PubMed ID: 35498500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites.
    Ghildiyal P; Ke X; Biswas P; Nava G; Schwan J; Xu F; Kline DJ; Wang H; Mangolini L; Zachariah MR
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):458-467. PubMed ID: 33373186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants.
    Sagripanti JL; Carrera M; Insalaco J; Ziemski M; Rogers J; Zandomeni R
    J Appl Microbiol; 2007 Jan; 102(1):11-21. PubMed ID: 17184315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine-Rich Imidazolium Iodate and Periodate Salts: En Route to Single-Based Biocidal Agents.
    He C; Hooper JP; Shreeve JM
    Inorg Chem; 2016 Dec; 55(24):12844-12850. PubMed ID: 27989173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents.
    Chang J; Zhao G; Zhao X; He C; Pang S; Shreeve JM
    Acc Chem Res; 2021 Jan; 54(2):332-343. PubMed ID: 33300791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocidal properties of metal oxide nanoparticles and their halogen adducts.
    Haggstrom JA; Klabunde KJ; Marchin GL
    Nanoscale; 2010 Mar; 2(3):399-405. PubMed ID: 20644823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.
    Clark BR; Pantoya ML
    Phys Chem Chem Phys; 2010 Oct; 12(39):12653-7. PubMed ID: 20730185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Sporicidal activity of hydrogen peroxide and peracetic acid against Bacillus anthracis spores].
    Mizak L
    Med Dosw Mikrobiol; 2005; 57(4):437-42. PubMed ID: 16773838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of sporicidal activity and environmental Bacillus endospores decontamination by biogenic silver nanoparticle.
    Gopinath PM; Dhanasekaran D; Ranjani A; Thajuddin N; Akbarsha MA; Velmurugan M; Panneerselvam A
    Future Microbiol; 2015; 10(5):725-41. PubMed ID: 26000648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the sporicidal and fungicidal activity of disinfectants.
    Lensing HH; Oei HL
    Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Dec; 181(6):487-95. PubMed ID: 3938146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials.
    Prasad GK; Ramacharyulu PV; Merwyn S; Agarwal GS; Srivastava AR; Singh B; Rai GP; Vijayaraghavan R
    J Hazard Mater; 2011 Jan; 185(2-3):977-82. PubMed ID: 21035260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sporicidal activities of disinfectants against Bacillus anthracis spores].
    Saito A; Ono R; Shibata Y; Hamada Y; Yamaguchi M; Konuma H
    Kansenshogaku Zasshi; 2002 Apr; 76(4):291-2. PubMed ID: 12030029
    [No Abstract]   [Full Text] [Related]  

  • 14. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials.
    Rogers JV; Choi YW; Richter WR; Rudnicki DC; Joseph DW; Sabourin CL; Taylor ML; Chang JC
    J Appl Microbiol; 2007 Oct; 103(4):1104-12. PubMed ID: 17897215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A study of the efficacy of disinfectants against anthrax spores].
    Lensing HH; Oei HL
    Tijdschr Diergeneeskd; 1984 Jul; 109(13):557-63. PubMed ID: 6431631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue.
    Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B
    Appl Environ Microbiol; 2007 Oct; 73(20):6370-7. PubMed ID: 17720823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Sporicidal Activity of Oligo-p-phenylene Ethynylenes and Their Role as Bacillus Germinants.
    Pappas HC; Lovchik JA; Whitten DG
    Langmuir; 2015 Apr; 31(15):4481-9. PubMed ID: 25822668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of water content in the formation and reactivity of uranium, neptunium, and plutonium iodates under hydrothermal conditions: implications for the oxidative dissolution of spent nuclear fuel.
    Bray TH; Ling J; Choi ES; Brooks JS; Beitz JV; Sykora RE; Haire RG; Stanbury DM; Albrecht-Schmitt TE
    Inorg Chem; 2007 Apr; 46(9):3663-8. PubMed ID: 17397146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocidal and Sporicidal Efficacy of Pathoster(®) 0.35% and Pathoster(®) 0.50% Against Bacterial Agents in Potential Bioterrorism Use.
    Candeliere A; Campese E; Donatiello A; Pagano S; Iatarola M; Tolve F; Antonino L; Fasanella A
    Health Secur; 2016; 14(4):250-7. PubMed ID: 27482880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the oxidation of N-acetyl homocysteine thiolactone with aqueous iodine and iodate.
    Sexton A; Mbiya W; Morakinyo MK; Simoyi RH
    J Phys Chem A; 2013 Dec; 117(48):12693-702. PubMed ID: 24164347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.