These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26162238)

  • 1. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task.
    Kumar A; Grigoriadis J; Trulsson M; Svensson P; Svensson KG
    Neuroscience; 2015 Oct; 306():10-7. PubMed ID: 26162238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbed oral motor control due to anesthesia during intraoral manipulation of food.
    Grigoriadis J; Kumar A; Svensson P; Svensson KG; Trulsson M
    Sci Rep; 2017 Apr; 7():46691. PubMed ID: 28425479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine motor control of the jaw following alteration of orofacial afferent inputs.
    Kumar A; Castrillon E; Trulsson M; Svensson KG; Svensson P
    Clin Oral Investig; 2017 Mar; 21(2):613-626. PubMed ID: 27568306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?
    Zhang H; Kumar A; Kothari M; Luo X; Trulsson M; Svensson KG; Svensson P
    Exp Brain Res; 2016 Jul; 234(7):1935-1943. PubMed ID: 26914481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of jaw muscle activity and fine motor control during repeated biting tasks.
    Kumar A; Svensson KG; Baad-Hansen L; Trulsson M; Isidor F; Svensson P
    Arch Oral Biol; 2014 Dec; 59(12):1342-51. PubMed ID: 25193315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in intraoral manipulation and splitting of food by subjects with tooth- or implant-supported fixed prostheses.
    Svensson KG; Grigoriadis J; Trulsson M
    Clin Oral Implants Res; 2013 May; 24(5):549-55. PubMed ID: 22272657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral learning and skill acquisition during a natural yet novel biting task.
    Kumar A; Koullia N; Jongenburger M; Koutris M; Lobbezoo F; Trulsson M; Svensson P
    Physiol Behav; 2019 Nov; 211():112667. PubMed ID: 31479681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent control of the jaw during food splitting in humans.
    Johansson AS; Westberg KG; Edin BB
    J Neurophysiol; 2014 Jun; 111(12):2614-23. PubMed ID: 24671539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biting intentions modulate digastric reflex responses to sudden unloading of the jaw.
    Johansson AS; Pruszynski JA; Edin BB; Westberg KG
    J Neurophysiol; 2014 Sep; 112(5):1067-73. PubMed ID: 24899675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement and generalization of arm motor performance through motor imagery practice.
    Gentili R; Papaxanthis C; Pozzo T
    Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor learning without doing: trial-by-trial improvement in motor performance during mental training.
    Gentili R; Han CE; Schweighofer N; Papaxanthis C
    J Neurophysiol; 2010 Aug; 104(2):774-83. PubMed ID: 20538766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable effects of practice variability on learning motor and timing skills.
    Caramiaux B; Bevilacqua F; Wanderley MM; Palmer C
    PLoS One; 2018; 13(3):e0193580. PubMed ID: 29494670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The consolidation of a motor skill in young adults with ADHD: Shorter practice can be better.
    Fox O; Karni A; Adi-Japha E
    Res Dev Disabil; 2016; 51-52():135-44. PubMed ID: 26826465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of training time, sensory loss and pain on human motor learning.
    Boudreau SA; Hennings K; Svensson P; Sessle BJ; Arendt-Nielsen L
    J Oral Rehabil; 2010 Sep; 37(9):704-18. PubMed ID: 20492438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skill representation in the primary motor cortex after long-term practice.
    Matsuzaka Y; Picard N; Strick PL
    J Neurophysiol; 2007 Feb; 97(2):1819-32. PubMed ID: 17182912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning.
    Garry MI; Kamen G; Nordstrom MA
    J Neurophysiol; 2004 Apr; 91(4):1570-8. PubMed ID: 14627660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat.
    Buitrago MM; Ringer T; Schulz JB; Dichgans J; Luft AR
    Behav Brain Res; 2004 Dec; 155(2):249-56. PubMed ID: 15364484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor training decreases finger tremor and movement response time in a visuomotor tracking task.
    Dartnall TJ; Jaberzadeh S; Miles TS; Nordstrom MA
    J Mot Behav; 2009 Jan; 41(1):55-64. PubMed ID: 19073471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.