BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26162336)

  • 1. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.
    Liu Y; Zhang G; Liao Y; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():498-505. PubMed ID: 26162336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches.
    Liu Y; Zhang G; Zeng N; Hu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():188-195. PubMed ID: 27653277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the binding mode of psoralen to calf thymus DNA.
    Zhou X; Zhang G; Wang L
    Int J Biol Macromol; 2014 Jun; 67():228-37. PubMed ID: 24685466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies.
    Wang Y; Zhang G; Wang L
    Pestic Biochem Physiol; 2014 Jan; 108():66-73. PubMed ID: 24485317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques.
    Zhang Y; Zhang G; Zhou X; Li Y
    Anal Bioanal Chem; 2013 Nov; 405(27):8871-83. PubMed ID: 23975088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro.
    Wang Y; Zhang G; Wang L
    J Agric Food Chem; 2015 Jan; 63(1):75-84. PubMed ID: 25496445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin.
    Momeni L; Shareghi B; Saboury AA; Farhadian S; Reisi F
    Int J Biol Macromol; 2017 Jan; 94(Pt A):145-153. PubMed ID: 27720961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling.
    Song W; Yu Z; Hu X; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level.
    Hu X; Yu Z; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():50-4. PubMed ID: 23454844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods.
    Fang Q; Guo C; Wang Y; Liu Y
    J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Studies on the Interaction of Spermidine with Bovine Trypsin by Multispectroscopic and Docking Methods.
    Momeni L; Shareghi B; Saboury AA; Farhadian S
    J Phys Chem B; 2016 Sep; 120(36):9632-41. PubMed ID: 27541356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of binding interaction behavior between antiemetic drugs and Trypsin by spectroscopy and molecular docking.
    Sahin S; Calapoglu F; Ozbek Yazici S; Ozmen I
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Sep; 258():119817. PubMed ID: 33901946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods.
    Kumari M; Maurya JK; Tasleem M; Singh P; Patel R
    J Photochem Photobiol B; 2014 Sep; 138():27-35. PubMed ID: 24911269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding properties of herbicide chlorpropham to DNA: spectroscopic, chemometrics and modeling investigations.
    Li Y; Zhang G; Tao M
    J Photochem Photobiol B; 2014 Sep; 138():109-17. PubMed ID: 24927231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking.
    Ren G; Sun H; Guo J; Fan J; Li G; Xu S
    Food Funct; 2019 Jun; 10(6):3291-3302. PubMed ID: 31094411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of all-trans retinoic acid to human serum albumin: fluorescence, FT-IR and circular dichroism studies.
    Maiti TK; Ghosh KS; Debnath J; Dasgupta S
    Int J Biol Macromol; 2006 May; 38(3-5):197-202. PubMed ID: 16569428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of interaction between dexamethasone/pheniramine and trypsin by fluorescence, UV-vis, CD, and molecular docking.
    Calapoglu F; Sahin S; Ozmen I; Ozbek Yazici S
    J Biomol Struct Dyn; 2023 Apr; 41(6):2202-2210. PubMed ID: 35098895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling.
    Zhu P; Zhang G; Ma Y; Zhang Y; Miao H; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():7-14. PubMed ID: 23651773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin.
    Shuai L; Chen Z; Fei P; Wang Q; Yang T
    Luminescence; 2014 Feb; 29(1):79-86. PubMed ID: 23606547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling.
    Lu Y; Wang G; Lu X; Lv J; Xu M; Zhang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jan; 75(1):261-6. PubMed ID: 19910245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.