These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26162438)
1. Design of a toxicity biosensor based on Aliivibrio fischeri entrapped in a disposable card. Jouanneau S; Durand-Thouand MJ; Thouand G Environ Sci Pollut Res Int; 2016 Mar; 23(5):4340-5. PubMed ID: 26162438 [TBL] [Abstract][Full Text] [Related]
2. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Futra D; Heng LY; Surif S; Ahmad A; Ling TL Sensors (Basel); 2014 Dec; 14(12):23248-68. PubMed ID: 25490588 [TBL] [Abstract][Full Text] [Related]
3. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor. Affi M; Solliec C; Legentilhomme P; Comiti J; Legrand J; Jouanneau S; Thouand G Anal Bioanal Chem; 2016 Dec; 408(30):8761-8770. PubMed ID: 27040532 [TBL] [Abstract][Full Text] [Related]
4. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment. Komaitis E; Vasiliou E; Kremmydas G; Georgakopoulos DG; Georgiou C Sensors (Basel); 2010; 10(8):7089-98. PubMed ID: 22163592 [TBL] [Abstract][Full Text] [Related]
5. Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri. Mirjani M; Soleimani M; Salari V Ecotoxicol Environ Saf; 2021 Jan; 207():111554. PubMed ID: 33254411 [TBL] [Abstract][Full Text] [Related]
6. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor. Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000 [TBL] [Abstract][Full Text] [Related]
7. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor. Camanzi L; Bolelli L; Maiolini E; Girotti S; Matteuzzi D Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881 [TBL] [Abstract][Full Text] [Related]
8. Control of Aliivibrio fischeri Luminescence and Decrease in Bioluminescence by Fungicides. Kuwahara H; Ninomiya J; Morita H Biocontrol Sci; 2018; 23(3):85-96. PubMed ID: 30249967 [TBL] [Abstract][Full Text] [Related]
9. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Yagur-Kroll S; Schreuder E; Ingham CJ; Heideman R; Rosen R; Belkin S Biosens Bioelectron; 2015 Feb; 64():625-32. PubMed ID: 25441411 [TBL] [Abstract][Full Text] [Related]
10. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Jung I; Seo HB; Lee JE; Kim BC; Gu MB Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512 [TBL] [Abstract][Full Text] [Related]
11. Monitoring Aquaculture Water Quality: Design of an Early Warning Sensor with da Silva LFBA; Yang Z; Pires NMM; Dong T; Teien HC; Storebakken T; Salbu B Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158465 [TBL] [Abstract][Full Text] [Related]
12. Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips. Elad T; Almog R; Yagur-Kroll S; Levkov K; Melamed S; Shacham-Diamand Y; Belkin S Environ Sci Technol; 2011 Oct; 45(19):8536-44. PubMed ID: 21875062 [TBL] [Abstract][Full Text] [Related]
13. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Bhattacharyya J; Read D; Amos S; Dooley S; Killham K; Paton GI Environ Pollut; 2005 Apr; 134(3):485-92. PubMed ID: 15620594 [TBL] [Abstract][Full Text] [Related]
14. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Käkinen A; Bondarenko O; Ivask A; Kahru A Sensors (Basel); 2011; 11(11):10502-21. PubMed ID: 22346655 [TBL] [Abstract][Full Text] [Related]
15. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Jouanneau S; Durand MJ; Thouand G Environ Sci Technol; 2012 Nov; 46(21):11979-87. PubMed ID: 22989292 [TBL] [Abstract][Full Text] [Related]
16. Dual-signal-biosensor based on luminescent bacteria biofilm for real-time online alert of Cu(II) shock. Qi X; Liu P; Liang P; Hao W; Li M; Huang X Biosens Bioelectron; 2019 Oct; 142():111500. PubMed ID: 31323469 [TBL] [Abstract][Full Text] [Related]
17. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Axelrod T; Eltzov E; Marks RS Talanta; 2016; 149():290-297. PubMed ID: 26717844 [TBL] [Abstract][Full Text] [Related]
18. On-line microbial biosensing and fingerprinting of water pollutants. Horsburgh AM; Mardlin DP; Turner NL; Henkler R; Strachan N; Glover LA; Paton GI; Killham K Biosens Bioelectron; 2002 Jun; 17(6-7):495-501. PubMed ID: 11959470 [TBL] [Abstract][Full Text] [Related]
19. [Research of a bioluminent bacterial-based optical fiber sensor to detecting acute effects of pollutants in water]. Yu H; He M; Cai Q; Zhang LB Huan Jing Ke Xue; 2008 Feb; 29(2):375-9. PubMed ID: 18613508 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Lopez-Roldan R; Kazlauskaite L; Ribo J; Riva MC; González S; Cortina JL Sci Total Environ; 2012 Dec; 440():307-13. PubMed ID: 22726523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]