BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26162489)

  • 1. [Micro RNA and its role in the pathophysiology of spinal cord injury - a further step towards neuroregenerative medicine].
    Quinzaños-Fresnedo J; Sahagún-Olmos RC
    Cir Cir; 2015; 83(5):442-7. PubMed ID: 26162489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum.
    Monaghan JR; Walker JA; Page RB; Putta S; Beachy CK; Voss SR
    J Neurochem; 2007 Apr; 101(1):27-40. PubMed ID: 17241119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury.
    Liu Y; Ye H; Satkunendrarajah K; Yao GS; Bayon Y; Fehlings MG
    Acta Biomater; 2013 Sep; 9(9):8075-88. PubMed ID: 23770224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical Molecular Signatures of Spinal Cord Functional Restoration: Optimizing the Metamorphic Axolotl (
    Demircan T; Hacıbektaşoğlu H; Sibai M; Fesçioğlu EC; Altuntaş E; Öztürk G; Süzek BE
    OMICS; 2020 Jun; 24(6):370-378. PubMed ID: 32496969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axon regeneration after spinal cord injury: insight from genetically modified mouse models.
    Lee JK; Zheng B
    Restor Neurol Neurosci; 2008; 26(2-3):175-82. PubMed ID: 18820409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway.
    Dai J; Xu LJ; Han GD; Sun HL; Zhu GT; Jiang HT; Yu GY; Tang XM
    Eur Rev Med Pharmacol Sci; 2018 Feb; 22(3):582-589. PubMed ID: 29461585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual role of tumor necrosis factor-alpha in the pathophysiology of spinal cord injury.
    Chi LY; Yu J; Zhu H; Li XG; Zhu SG; Kindy MS
    Neurosci Lett; 2008 Jun; 438(2):174-9. PubMed ID: 18468795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord.
    Jee MK; Jung JS; Im YB; Jung SJ; Kang SK
    Hum Gene Ther; 2012 May; 23(5):508-20. PubMed ID: 22182208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair.
    Strickland ER; Hook MA; Balaraman S; Huie JR; Grau JW; Miranda RC
    Neuroscience; 2011 Jul; 186():146-60. PubMed ID: 21513774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the miR-99b-5p/mTOR signaling pathway in neuroregeneration in mice following spinal cord injury.
    Cao F; Liu T; Sun S; Feng S
    Mol Med Rep; 2017 Dec; 16(6):9355-9360. PubMed ID: 29039596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics Analysis of microRNA Time-Course Expression in Brown Rat (Rattus norvegicus): Spinal Cord Injury Self-Repair.
    Liu Y; Han N; Li Q; Li Z
    Spine (Phila Pa 1976); 2016 Jan; 41(2):97-103. PubMed ID: 26641843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic ablation of transcription repressor Bach1 reduces neural tissue damage and improves locomotor function after spinal cord injury in mice.
    Kanno H; Ozawa H; Dohi Y; Sekiguchi A; Igarashi K; Itoi E
    J Neurotrauma; 2009 Jan; 26(1):31-9. PubMed ID: 19119918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted expression of anti-apoptotic protein p35 in oligodendrocytes reduces delayed demyelination and functional impairment after spinal cord injury.
    Tamura M; Nakamura M; Ogawa Y; Toyama Y; Miura M; Okano H
    Glia; 2005 Sep; 51(4):312-21. PubMed ID: 15846791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression.
    Ziu M; Fletcher L; Savage JG; Jimenez DF; Digicaylioglu M; Bartanusz V
    Spine J; 2014 Feb; 14(2):353-60. PubMed ID: 24269082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.
    Terayama R; Bando Y; Murakami K; Kato K; Kishibe M; Yoshida S
    Neuroscience; 2007 Aug; 148(1):175-87. PubMed ID: 17629414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA dysregulation in the spinal cord following traumatic injury.
    Yunta M; Nieto-Díaz M; Esteban FJ; Caballero-López M; Navarro-Ruíz R; Reigada D; Pita-Thomas DW; del Águila A; Muñoz-Galdeano T; Maza RM
    PLoS One; 2012; 7(4):e34534. PubMed ID: 22511948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury.
    Liu D; Huang Y; Jia C; Li Y; Liang F; Fu Q
    Cell Mol Neurobiol; 2015 May; 35(4):483-91. PubMed ID: 25416533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.