These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 26162524)
1. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell. Alagu RM; Sundaram EG; Natarajan E Bioresour Technol; 2015 Oct; 193():463-8. PubMed ID: 26162524 [TBL] [Abstract][Full Text] [Related]
2. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends. Rajamohan S; Kasimani R Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857 [TBL] [Abstract][Full Text] [Related]
3. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Wang P; Zhan S; Yu H; Xue X; Hong N Bioresour Technol; 2010 May; 101(9):3236-41. PubMed ID: 20071166 [TBL] [Abstract][Full Text] [Related]
4. Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine. Rajamohan S; Kasimani R Environ Sci Pollut Res Int; 2018 Jun; 25(18):17749-17767. PubMed ID: 29671233 [TBL] [Abstract][Full Text] [Related]
5. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels. Aysu T Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis of scrap tyres with zeolite USY. Shen B; Wu C; Wang R; Guo B; Liang C J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900 [TBL] [Abstract][Full Text] [Related]
7. Bio-oil from cassava peel: a potential renewable energy source. Ki OL; Kurniawan A; Lin CX; Ju YH; Ismadji S Bioresour Technol; 2013 Oct; 145():157-61. PubMed ID: 23453024 [TBL] [Abstract][Full Text] [Related]
8. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Thangalazhy-Gopakumar S; Adhikari S; Chattanathan SA; Gupta RB Bioresour Technol; 2012 Aug; 118():150-7. PubMed ID: 22705518 [TBL] [Abstract][Full Text] [Related]
9. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Solak A; Rutkowski P Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369 [TBL] [Abstract][Full Text] [Related]
10. Pyrolysis of poppy capsule pulp for bio-oil production. Hopa DY; Yılmaz N; Alagöz O; Dilek M; Helvacı A; Durupınar Ü Waste Manag Res; 2016 Dec; 34(12):1316-1321. PubMed ID: 27895286 [TBL] [Abstract][Full Text] [Related]
11. Pyrolysis of sal seed to liquid product. Singh VK; Soni AB; Kumar S; Singh RK Bioresour Technol; 2014 Jan; 151():432-5. PubMed ID: 24268507 [TBL] [Abstract][Full Text] [Related]
12. Pyrolysis of latex gloves in the presence of Y-zeolite. Hall WJ; Zakaria N; Williams PT Waste Manag; 2009 Feb; 29(2):797-803. PubMed ID: 18789675 [TBL] [Abstract][Full Text] [Related]
13. Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil)--a three stage method. Venkanna BK; Venkataramana Reddy C Bioresour Technol; 2009 Nov; 100(21):5122-5. PubMed ID: 19505820 [TBL] [Abstract][Full Text] [Related]
14. Two-step biodiesel production from Calophyllum inophyllum oil: optimization of modified β-zeolite catalyzed pre-treatment. SathyaSelvabala V; Selvaraj DK; Kalimuthu J; Periyaraman PM; Subramanian S Bioresour Technol; 2011 Jan; 102(2):1066-72. PubMed ID: 20833536 [TBL] [Abstract][Full Text] [Related]
15. An analytical characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues. Thiru S; Kola R; Thimmaraju MK; Dhanalakshmi CS; Sharma V; Sakthi P; Maguluri LP; Ranganathan L; Lalvani JIJ Sci Rep; 2024 Jun; 14(1):14745. PubMed ID: 38926435 [TBL] [Abstract][Full Text] [Related]
16. Thermo-kinetics and product analysis of the catalytic pyrolysis of Pongamia residual cake. Masawat N; Atong D; Sricharoenchaikul V J Environ Manage; 2019 Jul; 242():238-245. PubMed ID: 31048229 [TBL] [Abstract][Full Text] [Related]
17. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394 [TBL] [Abstract][Full Text] [Related]
18. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Saikia R; Chutia RS; Kataki R; Pant KK Bioresour Technol; 2015; 188():265-72. PubMed ID: 25677534 [TBL] [Abstract][Full Text] [Related]
19. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Yazdani E; Hashemabadi SH; Taghizadeh A Waste Manag; 2019 Feb; 85():195-201. PubMed ID: 30803573 [TBL] [Abstract][Full Text] [Related]
20. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production. Aysu T Bioresour Technol; 2016 Nov; 219():175-184. PubMed ID: 27490443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]