These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 26162547)
1. Computational analyses of different intervertebral cages for lumbar spinal fusion. Bashkuev M; Checa S; Postigo S; Duda G; Schmidt H J Biomech; 2015 Sep; 48(12):3274-82. PubMed ID: 26162547 [TBL] [Abstract][Full Text] [Related]
2. Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process - a finite element analysis. Postigo S; Schmidt H; Rohlmann A; Putzier M; Simón A; Duda G; Checa S J Biomech; 2014 Apr; 47(6):1514-9. PubMed ID: 24607006 [TBL] [Abstract][Full Text] [Related]
3. Differences in 3D vs. 2D analysis in lumbar spinal fusion simulations. Hsu HW; Bashkuev M; Pumberger M; Schmidt H J Biomech; 2018 Apr; 72():262-267. PubMed ID: 29559240 [TBL] [Abstract][Full Text] [Related]
4. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Lee YH; Chung CJ; Wang CW; Peng YT; Chang CH; Chen CH; Chen YN; Li CT Comput Biol Med; 2016 Apr; 71():35-45. PubMed ID: 26874064 [TBL] [Abstract][Full Text] [Related]
5. [Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement]. Matejka J; Zeman J; Belatka J Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):388-93. PubMed ID: 19912702 [TBL] [Abstract][Full Text] [Related]
6. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Gödde S; Fritsch E; Dienst M; Kohn D Spine (Phila Pa 1976); 2003 Aug; 28(15):1693-9. PubMed ID: 12897494 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Xu H; Ju W; Xu N; Zhang X; Zhu X; Zhu L; Qian X; Wen F; Wu W; Jiang F Neurosurgery; 2013 Dec; 73(2 Suppl Operative):ons198-205; discussion ons205. PubMed ID: 23632763 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Polikeit A; Ferguson SJ; Nolte LP; Orr TE Eur Spine J; 2003 Aug; 12(4):413-20. PubMed ID: 12955610 [TBL] [Abstract][Full Text] [Related]
9. Bone Remodeling Around Solid and Porous Interbody Cages in the Lumbar Spine. Talukdar RG; Saviour CM; Tiwarekar K; Dhara S; Gupta S J Biomech Eng; 2022 Oct; 144(10):. PubMed ID: 35484999 [TBL] [Abstract][Full Text] [Related]
10. Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Kim Y Spine (Phila Pa 1976); 2007 Nov; 32(23):2558-68. PubMed ID: 17978654 [TBL] [Abstract][Full Text] [Related]
11. [Instability of lower lumbar treated with posterior lumbar interbody fusion with autologous iliac crest or interbody fusion cage: a comparative study]. Wang R; Lin X; Shi S; Xiu Z; Guo Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Aug; 22(8):928-32. PubMed ID: 18773807 [TBL] [Abstract][Full Text] [Related]
12. Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage. Ding JY; Qian S; Wan L; Huang B; Wang LG; Zhou Y Arch Orthop Trauma Surg; 2010 Apr; 130(4):565-71. PubMed ID: 20140621 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the compressive stiffness of spinal cages in various experimental conditions based on finite element analysis. Kim YH; Choi DK; Kim K Proc Inst Mech Eng H; 2012 Apr; 226(4):341-4. PubMed ID: 22611875 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical analysis of cages for posterior lumbar interbody fusion. Fantigrossi A; Galbusera F; Raimondi MT; Sassi M; Fornari M Med Eng Phys; 2007 Jan; 29(1):101-9. PubMed ID: 16563847 [TBL] [Abstract][Full Text] [Related]
15. [Application of single interbody fusion cage with pedicle screws by transforaminal approach in treating lumbar instability]. Wang RY; Hua YJ; Guo ZH Zhongguo Gu Shang; 2010 Apr; 23(4):248-50. PubMed ID: 20486371 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study. Bozkurt C; Şenköylü A; Aktaş E; Sarıkaya B; Sipahioğlu S; Gürbüz R; Timuçin M Biomed Res Int; 2018; 2018():4152543. PubMed ID: 29581974 [TBL] [Abstract][Full Text] [Related]
17. Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement. Calvo-Echenique A; Cegoñino J; Chueca R; Pérez-Del Palomar A Comput Methods Programs Biomed; 2018 Aug; 162():211-219. PubMed ID: 29903488 [TBL] [Abstract][Full Text] [Related]
18. Comparison of fusion rate and clinical results between CaO-SiO Lee JH; Kong CB; Yang JJ; Shim HJ; Koo KH; Kim J; Lee CK; Chang BS Spine J; 2016 Nov; 16(11):1367-1376. PubMed ID: 27498334 [TBL] [Abstract][Full Text] [Related]
19. Do we need a transforaminal lumbar interbody fusion cage to increase the stability of functional spinal unit when comparing unilateral and bilateral fixation? Ulutaş M; Özkaya M; Yaman O; Demir T Proc Inst Mech Eng H; 2018 Jul; 232(7):655-664. PubMed ID: 29923451 [TBL] [Abstract][Full Text] [Related]
20. Mechano-driven intervertebral bone bridging via oriented mechanical stimulus in a twist metamaterial cage: An in silico study. Huo M; He S; Zhang Y; Liu Q; Liu M; Zhou G; Zhou P; Lu J Comput Biol Med; 2024 Mar; 171():108149. PubMed ID: 38401455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]