These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 26162745)
1. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related]
2. Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors. Ren L; Cao X; Geng P; Bai F; Bai G Carbohydr Res; 2011 Dec; 346(17):2688-92. PubMed ID: 22036121 [TBL] [Abstract][Full Text] [Related]
3. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
4. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
5. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit. Quezada-Calvillo R; Sim L; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Robayo-Torres CC; Rose DR; Nichols BL J Nutr; 2008 Apr; 138(4):685-92. PubMed ID: 18356321 [TBL] [Abstract][Full Text] [Related]
6. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. Sim L; Quezada-Calvillo R; Sterchi EE; Nichols BL; Rose DR J Mol Biol; 2008 Jan; 375(3):782-92. PubMed ID: 18036614 [TBL] [Abstract][Full Text] [Related]
7. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
8. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. Quezada-Calvillo R; Robayo-Torres CC; Opekun AR; Sen P; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Wattler S; Nehls MC; Sterchi EE; Nichols BL J Nutr; 2007 Jul; 137(7):1725-33. PubMed ID: 17585022 [TBL] [Abstract][Full Text] [Related]
9. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models. Kim HH; Kang YR; Lee JY; Chang HB; Lee KW; Apostolidis E; Kwon YI Nutrients; 2018 Feb; 10(3):. PubMed ID: 29495635 [TBL] [Abstract][Full Text] [Related]
10. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326 [TBL] [Abstract][Full Text] [Related]
11. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Baker SS; Nichols BL J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362 [TBL] [Abstract][Full Text] [Related]
12. Mammalian maltase-glucoamylase and sucrase-isomaltase inhibitory effects of Artocarpus heterophyllus: An in vitro and in silico approach. Abdulhaniff P; Sakayanathan P; Loganathan C; Iruthayaraj A; Thiyagarajan R; Thayumanavan P Comput Biol Chem; 2024 Jun; 110():108052. PubMed ID: 38492557 [TBL] [Abstract][Full Text] [Related]
13. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH; Eskandari R; Jones K; Reddy KR; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR; Pinto BM J Biol Chem; 2012 Sep; 287(38):31929-38. PubMed ID: 22851177 [TBL] [Abstract][Full Text] [Related]
14. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
16. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
17. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Jones K; Sim L; Mohan S; Kumarasamy J; Liu H; Avery S; Naim HY; Quezada-Calvillo R; Nichols BL; Pinto BM; Rose DR Bioorg Med Chem; 2011 Jul; 19(13):3929-34. PubMed ID: 21669536 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. Rossi EJ; Sim L; Kuntz DA; Hahn D; Johnston BD; Ghavami A; Szczepina MG; Kumar NS; Sterchi EE; Nichols BL; Pinto BM; Rose DR FEBS J; 2006 Jun; 273(12):2673-83. PubMed ID: 16817895 [TBL] [Abstract][Full Text] [Related]
20. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Ren L; Qin X; Cao X; Wang L; Bai F; Bai G; Shen Y Protein Cell; 2011 Oct; 2(10):827-36. PubMed ID: 22058037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]