BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26162853)

  • 41. Epigenetic regulation of airway inflammation.
    Adcock IM; Tsaprouni L; Bhavsar P; Ito K
    Curr Opin Immunol; 2007 Dec; 19(6):694-700. PubMed ID: 17720468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity.
    Fu Y; Zhang P; Ge J; Cheng J; Dong W; Yuan H; Du Y; Yang M; Sun R; Jiang H
    Int J Biochem Cell Biol; 2014 Sep; 54():68-77. PubMed ID: 25019367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment.
    Dai YS; Xu J; Molkentin JD
    Mol Cell Biol; 2005 Nov; 25(22):9936-48. PubMed ID: 16260608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer.
    Lu Z; Luo RZ; Peng H; Huang M; Nishmoto A; Hunt KK; Helin K; Liao WS; Yu Y
    Oncogene; 2006 Jan; 25(2):230-9. PubMed ID: 16158053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations.
    Zhao W; Wu X; Wang Z; Pan B; Liu L; Liu L; Huang X; Tian J
    Sci China Life Sci; 2020 Apr; 63(4):563-570. PubMed ID: 30900165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient.
    Fan LL; Ding DB; Huang H; Chen YQ; Jin JY; Xia K; Xiang R
    Clin Chem Lab Med; 2019 Mar; 57(4):532-539. PubMed ID: 30205637
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning of novel injury-regulated genes. Implications for an important role of the muscle-specific protein skNAC in muscle repair.
    Munz B; Wiedmann M; Lochmüller H; Werner S
    J Biol Chem; 1999 May; 274(19):13305-10. PubMed ID: 10224091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.
    Gao J; Li J; Li BJ; Yagil E; Zhang J; Du SJ
    PLoS One; 2014; 9(1):e86808. PubMed ID: 24466251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular characterization and expression regulation of Smyd1a and Smyd1b in skeletal muscle of Chinese perch (Siniperca chuatsi).
    Wang K; Zhu X; Li Y; Chen D; Wu P; Chu W
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 194-195():25-31. PubMed ID: 26780218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle.
    Harada A; Maehara K; Sato Y; Konno D; Tachibana T; Kimura H; Ohkawa Y
    Nucleic Acids Res; 2015 Jan; 43(2):775-86. PubMed ID: 25539924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.
    Bowman CJ; Ayer DE; Dynlacht BD
    Nat Cell Biol; 2014 Dec; 16(12):1202-14. PubMed ID: 25402684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray.
    Stewart MD; Lopez S; Nagandla H; Soibam B; Benham A; Nguyen J; Valenzuela N; Wu HJ; Burns AR; Rasmussen TL; Tucker HO; Schwartz RJ
    Dis Model Mech; 2016 Mar; 9(3):347-59. PubMed ID: 26935107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Down-regulated Smyd1 participated in the inhibition of myoblast differentiation induced by cigarette smoke extract.
    Li F; Xu M; Miao J; Hu N; Wang Y; Wang L
    Toxicol Lett; 2023 Jul; 383():98-111. PubMed ID: 37385529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CHD4 and SMYD1 repress common transcriptional programs in the developing heart.
    Shi W; Wasson LK; Dorr KM; Robbe ZL; Wilczewski CM; Hepperla AJ; Davis IJ; Seidman CE; Seidman JG; Conlon FL
    Development; 2024 Apr; 151(8):. PubMed ID: 38619323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smyd1 Orchestrates Early Heart Development Through Positive and Negative Gene Regulation.
    Wang Z; Schwartz RJ; Liu J; Sun F; Li Q; Ma Y
    Front Cell Dev Biol; 2021; 9():654682. PubMed ID: 33869215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation.
    Liu T; Wu C; Jain MR; Nagarajan N; Yan L; Dai H; Cui C; Baykal A; Pan S; Ago T; Sadoshima J; Li H
    Biochim Biophys Acta; 2015 Dec; 1854(12):1816-1822. PubMed ID: 26410624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA.
    Moresi V; Marroncelli N; Coletti D; Adamo S
    Biochim Biophys Acta; 2015 Mar; 1849(3):309-16. PubMed ID: 25598319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants.
    Rasmussen TL; Tucker HO
    Diseases; 2018 Dec; 7(1):. PubMed ID: 30577454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analyzing cold tolerance mechanism in transgenic zebrafish (Danio rerio).
    Wang Q; Tan X; Jiao S; You F; Zhang PJ
    PLoS One; 2014; 9(7):e102492. PubMed ID: 25058652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.