BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26162988)

  • 1. A Highly Selective Fluorescent Sensor for Pb(2+) Based on a Modified β-Cyclodextrin.
    Antony EJ; Raj M; Paulpandi RQ; Paulraj MS; Enoch IV
    J Fluoresc; 2015 Jul; 25(4):1031-6. PubMed ID: 26162988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new fluorescent chemosensor for cadmium(II) based on a pyrene-appended piperidone derivative and its β-cyclodextrin complex.
    Poomalai S; Govindaraj TS; Soundrapandian S; Paulraj MS; Enoch IVMV
    Luminescence; 2018 May; 33(3):538-544. PubMed ID: 29369512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and inclusion ability of anthracene appended β-cyclodextrins: unexpected effect of triazole linker.
    Mallard I; Landy D; Bouchemal N; Fourmentin S
    Carbohydr Res; 2011 Jan; 346(1):35-42. PubMed ID: 20974466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of fluorescent lead II sensor based on an anthracene derived chalcone.
    Prabhu J; Velmurugan K; Nandhakumar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():23-8. PubMed ID: 25744532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzenesulfonamidoquinolino-beta-cyclodextrin as a cell-impermeable fluorescent sensor for Zn2+.
    Zhang N; Chen Y; Yu M; Liu Y
    Chem Asian J; 2009 Nov; 4(11):1697-702. PubMed ID: 19757476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging.
    Anand T; Sivaraman G; Mahesh A; Chellappa D
    Anal Chim Acta; 2015 Jan; 853():596-601. PubMed ID: 25467508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TritonX-100 selective chemosensor based on beta-cyclodextrin modified by anthracene derivative.
    Oka Y; Nakamura S; Morozumi T; Nakamura H
    Talanta; 2010 Sep; 82(4):1622-6. PubMed ID: 20801384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinolinotriazole-beta-cyclodextrin and its adamantanecarboxylic acid complex as efficient water-soluble fluorescent Cd(2+) sensors.
    Zhang YM; Chen Y; Li ZQ; Li N; Liu Y
    Bioorg Med Chem; 2010 Feb; 18(4):1415-20. PubMed ID: 20129793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel rhodamine derivate as high selective detection lead sensor.
    Li LQ; Meng LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():772-5. PubMed ID: 24434113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel anthracene-based fluorescent sensor for selective recognition of acetate anions in protic media.
    Xu K; Kong H; Li Q; Song P; Dai Y; Yang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():957-61. PubMed ID: 25282025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-beta-cyclodextrin to Zn2+.
    Liu Y; Zhang N; Chen Y; Wang LH
    Org Lett; 2007 Jan; 9(2):315-8. PubMed ID: 17217293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of some modified mono- and bis-beta-cyclodextrins with bovine serum albumin.
    Gao H; Wang YN; Fan YG; Ma JB
    Bioorg Med Chem; 2006 Jan; 14(1):131-7. PubMed ID: 16183293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the spectral and inclusion properties of a sensitive dye, 3-naphthyl-1-phenyl-5-(5-fluoro-2-nitrophenyl)-2-pyrazoline, in solvents and β-cyclodextrin.
    Varghese B; Al-Busafi SN; Suliman FO; Al-Kindy SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():661-71. PubMed ID: 25448966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization of conjugated oligo-phenylene-ethynylenes and their supramolecular interaction with β-cyclodextrin for salicylaldehyde detection.
    Liu M; Deng J; Lai C; Chen Q; Zhao Q; Zhang Y; Li H; Yao S
    Talanta; 2012 Oct; 100():229-38. PubMed ID: 23141331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected fluorescent behavior of a 4-amino-1,8-naphthalimide derived beta-cyclodextrin: conformation analysis and sensing properties.
    Zhong C; Mu T; Wang L; Fu E; Qin J
    Chem Commun (Camb); 2009 Jul; (27):4091-3. PubMed ID: 19568643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of pyromellitic diimide derivatives with beta-cyclodextrin and anthracene-appended beta-cyclodextrin: rim binding vs inclusion complexation.
    Balan B; Sivadas DL; Gopidas KR
    Org Lett; 2007 Jul; 9(14):2709-12. PubMed ID: 17550261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual Fluorescence Quenching-Based Al
    Kaliyamoorthi K; Maniraj S; Govindaraj TS; Ramasamy S; Paulraj MS; Enoch IV; Melchior A
    J Fluoresc; 2020 May; 30(3):445-453. PubMed ID: 32125570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-phenyl-1-naphthylamine/β-cyclodextrin inclusion complex as a new fluorescent probe for rapid and visual detection of Pd(2+).
    Maniyazagan M; Mohandoss S; Sivakumar K; Stalin T
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():73-9. PubMed ID: 24929318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential molecular encapsulation of an ICT fluorescence probe in the supramolecular cage of cucurbit[7]uril and β-cyclodextrin: an experimental and theoretical approach.
    Samanta A; Guchhait N; Bhattacharya SC
    J Phys Chem B; 2014 Nov; 118(46):13279-89. PubMed ID: 25338132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biquinolino-modified beta-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids.
    Liu Y; Song Y; Chen Y; Li XQ; Ding F; Zhong RQ
    Chemistry; 2004 Aug; 10(15):3685-96. PubMed ID: 15281152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.