BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26162989)

  • 1. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B.
    Zhang XF; Zhang J; Lu X
    J Fluoresc; 2015 Jul; 25(4):1151-8. PubMed ID: 26162989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: a spectroscopic study.
    Gür B; Meral K
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():306-13. PubMed ID: 23123237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.
    Geng H; Zhang XF
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():13-9. PubMed ID: 25546492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
    Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: the effect of the molecular structure revealed by a photophysical study.
    Zhang XF; Liu SP; Shao XN
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():92-9. PubMed ID: 23714186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysical and photodynamic properties of Pyronin Y in micellar media at different temperatures.
    Beşer BM; Arik M; Onganer Y
    Luminescence; 2019 Jun; 34(4):415-425. PubMed ID: 30868727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate.
    Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics and photodynamics of Pyronin Y in n-alcohols.
    Beşer BM; Onganer Y; Arik M
    Luminescence; 2018 Dec; 33(8):1394-1400. PubMed ID: 30403000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent amino- and thiopyronin dyes.
    Wu L; Burgess K
    Org Lett; 2008 May; 10(9):1779-82. PubMed ID: 18396890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Interaction between Rhodamine Dyes and Allura Red Based on Fluorescence Spectra and Its Analytical Application in Soft Drinks.
    Sun Q; Yang L; Yang J; Liu S; Hu X
    Anal Sci; 2017; 33(10):1181-1187. PubMed ID: 28993594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a benzothiazole-functionalized red-emission pyronin dye and its dihydro derivative for imaging lysosomal viscosity and tracking endogenous peroxynitrite.
    Ren M; Wang L; Lv X; Liu J; Chen H; Wang J; Guo W
    J Mater Chem B; 2019 Oct; 7(40):6181-6186. PubMed ID: 31560350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic investigations on the binding of Pyronin Y to human serum albumin.
    Salci A; Toprak M
    J Biomol Struct Dyn; 2017 Jan; 35(1):8-16. PubMed ID: 26646531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence spectra of organic dyes in solution: a time dependent multilevel approach.
    Barone V; Bloino J; Monti S; Pedone A; Prampolini G
    Phys Chem Chem Phys; 2011 Feb; 13(6):2160-6. PubMed ID: 21127788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-carbon bond cleavage in fluorescent pyronin analogues induced by yellow light.
    Štacko P; Šebej P; Veetil AT; Klán P
    Org Lett; 2012 Sep; 14(18):4918-21. PubMed ID: 22937778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment.
    Savarese M; Aliberti A; De Santo I; Battista E; Causa F; Netti PA; Rega N
    J Phys Chem A; 2012 Jul; 116(28):7491-7. PubMed ID: 22667332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes.
    Sabatini RP; Mark MF; Mark DJ; Kryman MW; Hill JE; Brennessel WW; Detty MR; Eisenberg R; McCamant DW
    Photochem Photobiol Sci; 2016 Nov; 15(11):1417-1432. PubMed ID: 27734050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.
    Pathrose B; Nampoori VP; Radhakrishnan P; Sahira H; Mujeeb A
    J Fluoresc; 2015 May; 25(3):739-44. PubMed ID: 25820872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Bright Rhodamines with Sulfobutylether-β-Cyclodextrin: A Viable Supramolecular Dye Laser in Aqueous Medium.
    Khurana R; Agarwalla S; Sridhar G; Barooah N; Bhasikuttan AC; Mohanty J
    Chemphyschem; 2018 Sep; 19(18):2349-2356. PubMed ID: 29947036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.