These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26163521)

  • 1. Wear assessments of a new cervical spinal disk prosthesis: Influence of loading and kinematic patterns during in vitro wear simulation.
    Wu W; Lyu J; Liu H; Rong X; Wang B; Hong Y; Gong Q; Li T; Liu L; Song Y; Cai Y; Xu W
    Proc Inst Mech Eng H; 2015 Sep; 229(9):619-28. PubMed ID: 26163521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.
    Siskey R; Ciccarelli L; Lui MK; Kurtz SM
    Clin Orthop Relat Res; 2016 Nov; 474(11):2428-2440. PubMed ID: 27677290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.
    Grupp TM; Yue JJ; Garcia R; Basson J; Schwiesau J; Fritz B; Blömer W
    Eur Spine J; 2009 Jan; 18(1):98-108. PubMed ID: 19050942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative bearing materials for intervertebral disc arthroplasty.
    Grupp TM; Meisel HJ; Cotton JA; Schwiesau J; Fritz B; Blömer W; Jansson V
    Biomaterials; 2010 Jan; 31(3):523-31. PubMed ID: 19815271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into PEEK-on-PEEK as a bearing surface candidate for cervical total disc replacement.
    Kraft M; Koch DK; Bushelow M
    Spine J; 2012 Jul; 12(7):603-11. PubMed ID: 22964013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic scientific considerations in total disc arthroplasty.
    Cunningham BW
    Spine J; 2004; 4(6 Suppl):219S-230S. PubMed ID: 15541670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the loading frequency on the wear rate of a polyethylene-on-metal lumbar intervertebral disc replacement.
    Kettler A; Bushelow M; Wilke HJ
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S709-16. PubMed ID: 20936310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of crosslinking on the wear performance of polyethylene within total ankle arthroplasty.
    Bischoff JE; Fryman JC; Parcell J; Orozco Villaseñor DA
    Foot Ankle Int; 2015 Apr; 36(4):369-76. PubMed ID: 25370209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models that incorporate spinal structures predict better wear performance of cervical artificial discs.
    Bhattacharya S; Goel VK; Liu X; Kiapour A; Serhan HA
    Spine J; 2011 Aug; 11(8):766-76. PubMed ID: 21802999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bryan Cervical Disc: wear properties and early clinical results.
    Anderson PA; Sasso RC; Rouleau JP; Carlson CS; Goffin J
    Spine J; 2004; 4(6 Suppl):303S-309S. PubMed ID: 15541681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wear of the Charité® lumbar intervertebral disc replacement investigated using an electro-mechanical spine simulator.
    Moghadas P; Mahomed A; Shepherd DE; Hukins DW
    Proc Inst Mech Eng H; 2015 Mar; 229(3):264-8. PubMed ID: 25834002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wear analysis of the Bryan Cervical Disc prosthesis.
    Anderson PA; Rouleau JP; Bryan VE; Carlson CS
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S186-94. PubMed ID: 14560190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.
    Wang S; Wang F; Liao Z; Wang Q; Liu Y; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():22-33. PubMed ID: 26117735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of novel angled cervical disc replacement on facet joint stress].
    Bai C; Zhang W; Ling W; Tian Z; Dang X; Wang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):390-5. PubMed ID: 22568314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative wear tests of ultra-high molecular weight polyethylene and cross-linked polyethylene.
    Harsha AP; Joyce TJ
    Proc Inst Mech Eng H; 2013 May; 227(5):600-8. PubMed ID: 23637270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive modelling of cervical disc implant wear.
    de Jongh CU; Basson AH; Scheffer C
    J Biomech; 2008 Nov; 41(15):3177-83. PubMed ID: 18947829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotopic ossification in cervical total disk replacement: a finite element analysis.
    Ganbat D; Kim K; Jin YJ; Kim YH
    Proc Inst Mech Eng H; 2014 Feb; 228(2):200-5. PubMed ID: 24477889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.