These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26163746)

  • 1. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.
    Desmet C; Marquette CA; Blum LJ; Doumèche B
    Biosens Bioelectron; 2016 Feb; 76():145-63. PubMed ID: 26163746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.
    Nöll T; Nöll G
    Chem Soc Rev; 2011 Jul; 40(7):3564-76. PubMed ID: 21509355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.
    Zhou M; Dong S
    Acc Chem Res; 2011 Nov; 44(11):1232-43. PubMed ID: 21812435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.
    Jia X; Dong S; Wang E
    Biosens Bioelectron; 2016 Feb; 76():80-90. PubMed ID: 26001888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in enzyme bioelectrochemistry.
    Pereira AR; Sedenho GC; Souza JCP; Crespilho FN
    An Acad Bras Cienc; 2018; 90(1 Suppl 1):825-857. PubMed ID: 29742206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic biofuel cells: 30 years of critical advancements.
    Rasmussen M; Abdellaoui S; Minteer SD
    Biosens Bioelectron; 2016 Feb; 76():91-102. PubMed ID: 26163747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications.
    Ludwig R; Harreither W; Tasca F; Gorton L
    Chemphyschem; 2010 Sep; 11(13):2674-97. PubMed ID: 20661990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.
    Wu K; Zhang Y; Wang Y; Ge S; Yan M; Yu J; Song X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24330-7. PubMed ID: 26479328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design.
    Ramanavicius S; Ramanavicius A
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes.
    Ahmed MU; Hossain MM; Safavieh M; Wong YL; Abd Rahman I; Zourob M; Tamiya E
    Crit Rev Biotechnol; 2016; 36(3):495-505. PubMed ID: 25578718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells.
    Won K; Kim YH; An S; Lee HJ; Park S; Choi YK; Kim JH; Hwang HI; Kim HJ; Kim H; Lee SH
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1194-202. PubMed ID: 23508863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects.
    Zhang Y; Lv Z; Zhou J; Xin F; Ma J; Wu H; Fang Y; Jiang M; Dong W
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10409-10423. PubMed ID: 30327832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors.
    Shumyantseva VV; Bulko TV; Archakov AI
    J Inorg Biochem; 2005 May; 99(5):1051-63. PubMed ID: 15833328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes.
    Rozlosnik N
    Anal Bioanal Chem; 2009 Oct; 395(3):637-45. PubMed ID: 19644677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuel cells and their development.
    Bullen RA; Arnot TC; Lakeman JB; Walsh FC
    Biosens Bioelectron; 2006 May; 21(11):2015-45. PubMed ID: 16569499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic biofuel cells for implantable and microscale devices.
    Barton SC; Gallaway J; Atanassov P
    Chem Rev; 2004 Oct; 104(10):4867-86. PubMed ID: 15669171
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes.
    Ammam M
    Biosens Bioelectron; 2014 Aug; 58():121-31. PubMed ID: 24632138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells.
    Dai M; Sun L; Chao L; Tan Y; Fu Y; Chen C; Xie Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10843-52. PubMed ID: 25938891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.
    Fischer C; Fraiwan A; Choi S
    Biosens Bioelectron; 2016 May; 79():193-7. PubMed ID: 26706941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.