These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26164016)

  • 1. Negative epistasis: a route to intraspecific reproductive isolation in yeast?
    Hou J; Schacherer J
    Curr Genet; 2016 Feb; 62(1):25-9. PubMed ID: 26164016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-wide survey reveals the various flavors of intraspecific reproductive isolation in yeast.
    Hou J; Fournier T; Schacherer J
    FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27288348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast.
    Hou J; Friedrich A; Gounot JS; Schacherer J
    Nat Commun; 2015 May; 6():7214. PubMed ID: 26008139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae.
    Hou J; Friedrich A; de Montigny J; Schacherer J
    Curr Biol; 2014 May; 24(10):1153-9. PubMed ID: 24814147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast.
    Dettman JR; Sirjusingh C; Kohn LM; Anderson JB
    Nature; 2007 May; 447(7144):585-8. PubMed ID: 17538619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starvation-associated genome restructuring can lead to reproductive isolation in yeast.
    Kroll E; Coyle S; Dunn B; Koniges G; Aragon A; Edwards J; Rosenzweig F
    PLoS One; 2013; 8(7):e66414. PubMed ID: 23894280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.
    Li C; Wang Z; Zhang J
    Genome Biol Evol; 2013; 5(7):1261-72. PubMed ID: 23742870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of hybrid fitness during speciation.
    Dagilis AJ; Kirkpatrick M; Bolnick DI
    PLoS Genet; 2019 May; 15(5):e1008125. PubMed ID: 31059513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No evidence for extrinsic post-zygotic isolation in a wild
    Charron G; Landry CR
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28592521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal variation segregates within incipient species and correlates with reproductive isolation.
    Charron G; Leducq JB; Landry CR
    Mol Ecol; 2014 Sep; 23(17):4362-72. PubMed ID: 25039979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae.
    Parreiras LS; Kohn LM; Anderson JB
    Eukaryot Cell; 2011 Oct; 10(10):1348-56. PubMed ID: 21856932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and molecular bases of reproductive isolation.
    Bozdag GO; Ono J
    Curr Opin Genet Dev; 2022 Oct; 76():101952. PubMed ID: 35849861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of reproductive isolation between two closely related oak species in zones of recent and ancient secondary contact.
    Liao WJ; Zhu BR; Li YF; Li XM; Zeng YF; Zhang DY
    BMC Evol Biol; 2019 Mar; 19(1):70. PubMed ID: 30841907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae.
    Paliwal S; Fiumera AC; Fiumera HL
    Genetics; 2014 Nov; 198(3):1251-65. PubMed ID: 25164882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary biology through the lens of budding yeast comparative genomics.
    Marsit S; Leducq JB; Durand É; Marchant A; Filteau M; Landry CR
    Nat Rev Genet; 2017 Oct; 18(10):581-598. PubMed ID: 28714481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics.
    Hou J; Schacherer J
    Methods Mol Biol; 2016; 1361():345-60. PubMed ID: 26483031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular and evolutionary basis of reproductive isolation in plants.
    Ouyang Y; Zhang Q
    J Genet Genomics; 2018 Nov; 45(11):613-620. PubMed ID: 30459118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prezygotic isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus through differences in mating speed and germination timing.
    Murphy HA; Zeyl CW
    Evolution; 2012 Apr; 66(4):1196-209. PubMed ID: 22486698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes.
    Chou JY; Leu JY
    Bioessays; 2010 May; 32(5):401-11. PubMed ID: 20414898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces yeast hybrids on the rise.
    Bendixsen DP; Frazão JG; Stelkens R
    Yeast; 2022 Jan; 39(1-2):40-54. PubMed ID: 34907582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.