These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Thangaratnarajah C; Ruprecht JJ; Kunji ER Nat Commun; 2014 Nov; 5():5491. PubMed ID: 25410934 [TBL] [Abstract][Full Text] [Related]
5. Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Traba J; Satrústegui J; del Arco A Biochem J; 2009 Feb; 418(1):125-33. PubMed ID: 18928449 [TBL] [Abstract][Full Text] [Related]
6. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251 [TBL] [Abstract][Full Text] [Related]
7. The transport mechanism of the mitochondrial ADP/ATP carrier. Kunji ER; Aleksandrova A; King MS; Majd H; Ashton VL; Cerson E; Springett R; Kibalchenko M; Tavoulari S; Crichton PG; Ruprecht JJ Biochim Biophys Acta; 2016 Oct; 1863(10):2379-93. PubMed ID: 27001633 [TBL] [Abstract][Full Text] [Related]
8. Ca García-Catalán S; González-Moreno L; Del Arco A Biochim Biophys Acta Mol Cell Res; 2021 Jun; 1868(7):119038. PubMed ID: 33839167 [TBL] [Abstract][Full Text] [Related]
9. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca(2+)-effects. Lorenz A; Lorenz M; Vothknecht UC; Niopek-Witz S; Neuhaus HE; Haferkamp I BMC Plant Biol; 2015 Oct; 15():238. PubMed ID: 26444389 [TBL] [Abstract][Full Text] [Related]
10. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Tavoulari S; Lacabanne D; Pereira GC; Thangaratnarajah C; King MS; He J; Chowdhury SR; Tilokani L; Palmer SM; Prudent J; Walker JE; Kunji ERS Mol Metab; 2024 Dec; 90():102047. PubMed ID: 39419476 [TBL] [Abstract][Full Text] [Related]
11. Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. del Arco A; Satrústegui J J Biol Chem; 2004 Jun; 279(23):24701-13. PubMed ID: 15054102 [TBL] [Abstract][Full Text] [Related]
12. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Ruprecht JJ; Hellawell AM; Harding M; Crichton PG; McCoy AJ; Kunji ER Proc Natl Acad Sci U S A; 2014 Jan; 111(4):E426-34. PubMed ID: 24474793 [TBL] [Abstract][Full Text] [Related]
13. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. Fiermonte G; De Leonardis F; Todisco S; Palmieri L; Lasorsa FM; Palmieri F J Biol Chem; 2004 Jul; 279(29):30722-30. PubMed ID: 15123600 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial ATP-Mg/Pi carrier SCaMC-3/Slc25a23 counteracts PARP-1-dependent fall in mitochondrial ATP caused by excitotoxic insults in neurons. Rueda CB; Traba J; Amigo I; Llorente-Folch I; González-Sánchez P; Pardo B; Esteban JA; del Arco A; Satrústegui J J Neurosci; 2015 Feb; 35(8):3566-81. PubMed ID: 25716855 [TBL] [Abstract][Full Text] [Related]
15. A self-sequestered calmodulin-like Ca²⁺ sensor of mitochondrial SCaMC carrier and its implication to Ca²⁺-dependent ATP-Mg/P(i) transport. Yang Q; Brüschweiler S; Chou JJ Structure; 2014 Feb; 22(2):209-17. PubMed ID: 24332718 [TBL] [Abstract][Full Text] [Related]
16. ATP-Mg/Pi carrier activity in rat liver mitochondria. Nosek MT; Aprille JR Arch Biochem Biophys; 1992 Aug; 296(2):691-7. PubMed ID: 1632654 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. Aprille JR FASEB J; 1988 Jul; 2(10):2547-56. PubMed ID: 3290024 [TBL] [Abstract][Full Text] [Related]