These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26164841)

  • 1. A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife.
    Lankford-Bingle AJ; Svancara LK; Vierling K
    Environ Manage; 2015 Dec; 56(6):1514-27. PubMed ID: 26164841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse climate change projections for species living in a fine-scaled world.
    Nadeau CP; Urban MC; Bridle JR
    Glob Chang Biol; 2017 Jan; 23(1):12-24. PubMed ID: 27550861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating sensitivity from exposure in assessing extinction risk from climate change.
    Dickinson MG; Orme CD; Suttle KB; Mace GM
    Sci Rep; 2014 Nov; 4():6898. PubMed ID: 25367429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.
    Ribeiro BR; Sales LP; De Marco P; Loyola R
    PLoS One; 2016; 11(11):e0165073. PubMed ID: 27829036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choice of baseline climate data impacts projected species' responses to climate change.
    Baker DJ; Hartley AJ; Butchart SH; Willis SG
    Glob Chang Biol; 2016 Jul; 22(7):2392-404. PubMed ID: 26950769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest.
    Cruz-McDonnell KK; Wolf BO
    Glob Chang Biol; 2016 Jan; 22(1):237-53. PubMed ID: 26367541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.
    Buotte PC; Peterson DL; McKelvey KS; Hicke JA
    J Environ Manage; 2016 Mar; 169():313-8. PubMed ID: 26796918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for assessing climate change impacts on water and watershed systems.
    Johnson TE; Weaver CP
    Environ Manage; 2009 Jan; 43(1):118-34. PubMed ID: 18830740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-SpaCE: an object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations.
    Loos M; Ragas AM; Plasmeijer R; Schipper AM; Hendriks AJ
    Sci Total Environ; 2010 Aug; 408(18):3908-17. PubMed ID: 20005557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem.
    Du X; Shrestha NK; Wang J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1872-1881. PubMed ID: 30286353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of climate change on avian populations.
    Jenouvrier S
    Glob Chang Biol; 2013 Jul; 19(7):2036-57. PubMed ID: 23505016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directionality of recent bird distribution shifts and climate change in Great Britain.
    Gillings S; Balmer DE; Fuller RJ
    Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between occupancy and abundance for a territorial species, the California spotted owl.
    Tempel DJ; Gutiérrez RJ
    Conserv Biol; 2013 Oct; 27(5):1087-95. PubMed ID: 23678946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
    Barbraud C; Rivalan P; Inchausti P; Nevoux M; Rolland V; Weimerskirch H
    J Anim Ecol; 2011 Jan; 80(1):89-100. PubMed ID: 20840607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistate Models Reveal Long-Term Trends of Northern Spotted Owls in the Absence of a Novel Competitor.
    Kroll AJ; Jones JE; Stringer AB; Meekins DJ
    PLoS One; 2016; 11(4):e0152888. PubMed ID: 27065016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil.
    Menq W; Anjos L
    Braz J Biol; 2015 Nov; 75(4 Suppl 1):S143-9. PubMed ID: 26602354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A test of multiple hypotheses for the species richness gradient of South American owls.
    Diniz-Filho JA; Rangel TF; Hawkins BA
    Oecologia; 2004 Aug; 140(4):633-8. PubMed ID: 15248060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.
    Pomara LY; LeDee OE; Martin KJ; Zuckerberg B
    Glob Chang Biol; 2014 Jul; 20(7):2087-99. PubMed ID: 24357530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using fuzzy logic to determine the vulnerability of marine species to climate change.
    Jones MC; Cheung WWL
    Glob Chang Biol; 2018 Feb; 24(2):e719-e731. PubMed ID: 28948655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.