These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26165156)
1. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. Sardar D; Lin Z; Schmidt EW Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156 [TBL] [Abstract][Full Text] [Related]
2. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651 [TBL] [Abstract][Full Text] [Related]
3. Insights into heterocyclization from two highly similar enzymes. McIntosh JA; Donia MS; Schmidt EW J Am Chem Soc; 2010 Mar; 132(12):4089-91. PubMed ID: 20210311 [TBL] [Abstract][Full Text] [Related]
4. Three Principles of Diversity-Generating Biosynthesis. Gu W; Schmidt EW Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639 [TBL] [Abstract][Full Text] [Related]
5. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins. Sardar D; Tianero MD; Schmidt EW Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922 [TBL] [Abstract][Full Text] [Related]
8. An efficient method for the in vitro production of azol(in)e-based cyclic peptides. Houssen WE; Bent AF; McEwan AR; Pieiller N; Tabudravu J; Koehnke J; Mann G; Adaba RI; Thomas L; Hawas UW; Liu H; Schwarz-Linek U; Smith MC; Naismith JH; Jaspars M Angew Chem Int Ed Engl; 2014 Dec; 53(51):14171-4. PubMed ID: 25331823 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. Chekan JR; Estrada P; Covello PS; Nair SK Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6551-6556. PubMed ID: 28584123 [TBL] [Abstract][Full Text] [Related]
10. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase. Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286 [TBL] [Abstract][Full Text] [Related]
11. Structure and mechanism of lanthipeptide biosynthetic enzymes. van der Donk WA; Nair SK Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269 [TBL] [Abstract][Full Text] [Related]
12. Recognition sequences and substrate evolution in cyanobactin biosynthesis. Sardar D; Pierce E; McIntosh JA; Schmidt EW ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112 [TBL] [Abstract][Full Text] [Related]
14. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis. Gu W; Sardar D; Pierce E; Schmidt EW J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998 [TBL] [Abstract][Full Text] [Related]
15. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Leikoski N; Liu L; Jokela J; Wahlsten M; Gugger M; Calteau A; Permi P; Kerfeld CA; Sivonen K; Fewer DP Chem Biol; 2013 Aug; 20(8):1033-43. PubMed ID: 23911585 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products. Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477 [TBL] [Abstract][Full Text] [Related]