These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26165156)

  • 1. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
    Sardar D; Lin Z; Schmidt EW
    Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
    Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW
    Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into heterocyclization from two highly similar enzymes.
    McIntosh JA; Donia MS; Schmidt EW
    J Am Chem Soc; 2010 Mar; 132(12):4089-91. PubMed ID: 20210311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria.
    Sivonen K; Leikoski N; Fewer DP; Jokela J
    Appl Microbiol Biotechnol; 2010 May; 86(5):1213-25. PubMed ID: 20195859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying Promiscuous RiPP Enzymes to Peptide Backbone
    Sarkar S; Gu W; Schmidt EW
    ACS Chem Biol; 2022 Aug; 17(8):2165-2178. PubMed ID: 35819062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient method for the in vitro production of azol(in)e-based cyclic peptides.
    Houssen WE; Bent AF; McEwan AR; Pieiller N; Tabudravu J; Koehnke J; Mann G; Adaba RI; Thomas L; Hawas UW; Liu H; Schwarz-Linek U; Smith MC; Naismith JH; Jaspars M
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14171-4. PubMed ID: 25331823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
    Chekan JR; Estrada P; Covello PS; Nair SK
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6551-6556. PubMed ID: 28584123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
    Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of lanthipeptide biosynthetic enzymes.
    van der Donk WA; Nair SK
    Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition sequences and substrate evolution in cyanobactin biosynthesis.
    Sardar D; Pierce E; McIntosh JA; Schmidt EW
    ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine molecular machines: heterocyclization in cyanobactin biosynthesis.
    McIntosh JA; Schmidt EW
    Chembiochem; 2010 Jul; 11(10):1413-21. PubMed ID: 20540059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.
    Gu W; Sardar D; Pierce E; Schmidt EW
    J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
    Leikoski N; Liu L; Jokela J; Wahlsten M; Gugger M; Calteau A; Permi P; Kerfeld CA; Sivonen K; Fewer DP
    Chem Biol; 2013 Aug; 20(8):1033-43. PubMed ID: 23911585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products.
    Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW
    J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of leader peptide binding enables leader-free cyanobactin processing.
    Koehnke J; Mann G; Bent AF; Ludewig H; Shirran S; Botting C; Lebl T; Houssen W; Jaspars M; Naismith JH
    Nat Chem Biol; 2015 Aug; 11(8):558-563. PubMed ID: 26098679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of cyanobactin maturation enzymes define a family of transamidating proteases.
    Agarwal V; Pierce E; McIntosh J; Schmidt EW; Nair SK
    Chem Biol; 2012 Nov; 19(11):1411-22. PubMed ID: 23177196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal Natural Products, Tailored To Fit.
    Funk MA; van der Donk WA
    Acc Chem Res; 2017 Jul; 50(7):1577-1586. PubMed ID: 28682627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.