These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26165285)

  • 21. Studies on the antioxidant activities of some new chromone compounds.
    Kładna A; Berczyński P; Piechowska T; Kruk I; Aboul-Enein HY; Ceylan-Unlusoy M; Verspohl EJ; Ertan R
    Luminescence; 2014 Nov; 29(7):846-53. PubMed ID: 24482260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium.
    Bora KS; Sharma A
    Pharm Biol; 2011 Dec; 49(12):1216-23. PubMed ID: 21999109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples.
    Xu C; Liu S; Liu Z; Song F; Liu S
    Anal Chim Acta; 2013 Sep; 793():53-60. PubMed ID: 23953206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidants suitable for use with chemiluminescence to identify oxyradical species.
    Oosthuizen MM; Greyling D
    Redox Rep; 1999; 4(6):277-90. PubMed ID: 10772067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant.
    Sen S; De B; Devanna N; Chakraborty R
    Chin J Nat Med; 2013 Mar; 11(2):149-57. PubMed ID: 23787182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced electrochemiluminescence employed for the selective detection of methyl parathion based on a zirconia nanoparticle film modified electrode.
    Zhou H; Gan N; Hou J; Li T; Cao Y
    Anal Sci; 2012; 28(3):267-73. PubMed ID: 22451367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenolic antioxidant scavenging of myosin radicals generated by hypervalent myoglobin.
    Jongberg S; Lund MN; Østdal H; Skibsted LH
    J Agric Food Chem; 2012 Dec; 60(48):12020-8. PubMed ID: 23163579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a new method using the reactivity of electrogenerated superoxide radical in the antioxidant capacity determination of flavonoids.
    Le Bourvellec C; Hauchard D; Darchen A; Burgot JL; Abasq ML
    Talanta; 2008 May; 75(4):1098-103. PubMed ID: 18585189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical DNA-sensor for evaluation of total antioxidant capacity of flavours and flavoured waters using superoxide radical damage.
    Barroso MF; Delerue-Matos C; Oliveira MB
    Biosens Bioelectron; 2011 May; 26(9):3748-54. PubMed ID: 21474298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.
    Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R
    Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radical scavenging activity of antioxidants evaluated by means of electrogenerated HO radical.
    Oliveira R; Geraldo D; Bento F
    Talanta; 2014 Nov; 129():320-7. PubMed ID: 25127602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.
    Prasad AK; Mishra PC
    J Phys Chem B; 2015 Jun; 119(25):7825-36. PubMed ID: 26020652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Characterization of plant phenolic compounds by cyclic voltammetry].
    Iakovleva KE; Kurzeev SA; Stepanova EV; Fedorova TV; Kuznetsov BA; Koroleva OV
    Prikl Biokhim Mikrobiol; 2007; 43(6):730-9. PubMed ID: 18173118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of antioxidants on chemiluminescence produced by reactive oxygen species.
    Pascual C; Romay C
    J Biolumin Chemilumin; 1992 Apr; 7(2):123-32. PubMed ID: 1317990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrogenerated chemiluminescence reaction of lucigenin with isatin at a platinum electrode.
    Qi H; Zhang C
    Luminescence; 2004; 19(1):21-5. PubMed ID: 14981642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Background emission of electrogenerated chemiluminescence during oxidation of tri-n-propylamine from the dimeric 1Δg state of O2.
    Senthil Kumar S; Bard AJ
    Anal Chem; 2013 Jan; 85(1):292-5. PubMed ID: 23181660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intensification of the electrochemiluminescence of luminol on hollow TiO₂ nanoshell-modified indium tin oxide electrodes.
    Hong J; Ming L; Tu Y
    Talanta; 2014 Oct; 128():242-7. PubMed ID: 25059155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide generation from the reduction of oxygen at the carbon-oil-water triple phase boundary.
    Nissim R; Compton RG
    Phys Chem Chem Phys; 2013 Jul; 15(28):11918-25. PubMed ID: 23765066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.