BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26165289)

  • 1. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.
    Li J; He H; Peng X; Huang M; Zhang X; Wang S
    Anal Sci; 2015; 31(7):663-7. PubMed ID: 26165289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2'-anthraquinone-conjugated oligonucleotide as an electrochemical probe for DNA mismatch.
    Kumamoto S; Watanabe M; Kawakami N; Nakamura M; Yamana K
    Bioconjug Chem; 2008 Jan; 19(1):65-9. PubMed ID: 17988077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode.
    Benvidi A; Firouzabadi AD; Moshtaghiun SM; Mazloum-Ardakani M; Tezerjani MD
    Anal Biochem; 2015 Sep; 484():24-30. PubMed ID: 25988596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recognition of G-G mismatch using the double functional probe with electrochemical active ferrocenyl.
    He H; Xia J; Chang G; Peng X; Lou Z; Nakatani K; Zhou X; Wang S
    Biosens Bioelectron; 2013 Apr; 42():36-40. PubMed ID: 23202327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new methodology for electrostatic immobilization of a non-labeled single strand DNA onto a self-assembled diazonium modified gold electrode and detection of its hybridization by differential pulse voltammetry.
    Mashhadizadeh MH; Talemi RP
    Talanta; 2013 Jan; 103():344-8. PubMed ID: 23200397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical detection of single-nucleotide mismatches: application of M-DNA.
    Long YT; Li CZ; Sutherland TC; Kraatz HB; Lee JS
    Anal Chem; 2004 Jul; 76(14):4059-65. PubMed ID: 15253643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical detection of DNA single base mismatch by the use of strand exchange reaction.
    Kumamoto S; Maruyama A; Nakamura M; Yamana K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):93-4. PubMed ID: 17150833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an electrochemical DNA biosensor with the DNA immobilization based on in situ generation of dithiocarbamate ligands.
    Wang L; Wang X; Chen X; Liu J; Liu S; Zhao C
    Bioelectrochemistry; 2012 Dec; 88():30-5. PubMed ID: 22763422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16 INK4A gene.
    Ge C; Miao W; Ji M; Gu N
    Anal Bioanal Chem; 2005 Oct; 383(4):651-9. PubMed ID: 16132144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlabeled hairpin DNA probe for electrochemical detection of single-nucleotide mismatches based on MutS-DNA interactions.
    Gong H; Zhong T; Gao L; Li X; Bi L; Kraatz HB
    Anal Chem; 2009 Oct; 81(20):8639-43. PubMed ID: 19769379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy.
    Wang Y; Li C; Li X; Li Y; Kraatz HB
    Anal Chem; 2008 Mar; 80(6):2255-60. PubMed ID: 18290674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS.
    Masarík M; Cahová K; Kizek R; Palecek E; Fojta M
    Anal Bioanal Chem; 2007 May; 388(1):259-70. PubMed ID: 17333147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay.
    Pänke O; Kirbs A; Lisdat F
    Biosens Bioelectron; 2007 May; 22(11):2656-62. PubMed ID: 17141493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy.
    Ito T; Hosokawa K; Maeda M
    Biosens Bioelectron; 2007 Mar; 22(8):1816-9. PubMed ID: 16979330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of single basepair mismatches on electron-transfer processes at Fc-PNA⋅DNA modified gold surfaces.
    Hüsken N; Gębala M; Battistel A; La Mantia F; Schuhmann W; Metzler-Nolte N
    Chemphyschem; 2012 Jan; 13(1):131-9. PubMed ID: 21932268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment.
    Yang J; Yang T; Feng Y; Jiao K
    Anal Biochem; 2007 Jun; 365(1):24-30. PubMed ID: 17420003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE; Mehrgardi MA
    Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical signature of mismatch in overhang DNA films: a scanning electrochemical microscopic study.
    Shamsi MH; Kraatz HB
    Analyst; 2013 Jun; 138(12):3538-43. PubMed ID: 23671908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode.
    Gao H; Qi X; Chen Y; Sun W
    Anal Chim Acta; 2011 Oct; 704(1-2):133-8. PubMed ID: 21907030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric and impedimetric DNA detection at single-use graphite electrodes modified with gold nanorods.
    Congur G; Sayar F; Erdem A; Piskin E
    Colloids Surf B Biointerfaces; 2013 Dec; 112():61-6. PubMed ID: 23958523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.