These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26165516)

  • 1. A phase-field model for fracture in biological tissues.
    Raina A; Miehe C
    Biomech Model Mechanobiol; 2016 Jun; 15(3):479-96. PubMed ID: 26165516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phase-field approach to model fracture of arterial walls: Theory and finite element analysis.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2016 Dec; 312():542-566. PubMed ID: 31649409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2018 Apr; 331():23-52. PubMed ID: 31649410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of progressive damage and rupture in fibrous biological tissues: application to aortic dissection.
    Gültekin O; Hager SP; Dal H; Holzapfel GA
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1607-1628. PubMed ID: 31093869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodology for the investigation of toughness and crack propagation in mouse bone.
    Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO
    J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements on the phase field approach to brittle fracture for heterogeneous materials and structures.
    Carollo V; Guillén-Hernández T; Reinoso J; Paggi M
    Adv Model Simul Eng Sci; 2018; 5(1):8. PubMed ID: 31259145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On a phase-field approach to model fracture of small intestine walls.
    Nagaraja S; Leichsenring K; Ambati M; De Lorenzis L; Böl M
    Acta Biomater; 2021 Aug; 130():317-331. PubMed ID: 34119714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-Field Model for the Simulation of Brittle-Anisotropic and Ductile Crack Propagation in Composite Materials.
    Herrmann C; Schneider D; Schoof E; Schwab F; Nestler B
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anisotropic elastic-viscoplastic damage model for bone tissue.
    Schwiedrzik JJ; Zysset PK
    Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.