These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 26165855)
1. Evidence of liquid-liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature. Xu W; Sandor MT; Yu Y; Ke HB; Zhang HP; Li MZ; Wang WH; Liu L; Wu Y Nat Commun; 2015 Jul; 6():7696. PubMed ID: 26165855 [TBL] [Abstract][Full Text] [Related]
2. The role of liquid-liquid transition in glass formation of CuZr alloys. Zhao X; Wang C; Zheng H; Tian Z; Hu L Phys Chem Chem Phys; 2017 Jun; 19(24):15962-15972. PubMed ID: 28594028 [TBL] [Abstract][Full Text] [Related]
3. Non-Arrhenius behaviour of nickel self-diffusion in liquid Ni Demmel F J Phys Condens Matter; 2022 Jul; 34(39):. PubMed ID: 35858583 [TBL] [Abstract][Full Text] [Related]
4. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids. Tanaka H Eur Phys J E Soft Matter; 2012 Oct; 35(10):113. PubMed ID: 23104614 [TBL] [Abstract][Full Text] [Related]
5. High-Temperature Liquid-Liquid Phase Transition in Glass-Forming Liquid Pd Zhou H; Yu P; Miao X; Peng C; Fu L; Si C; Lu Q; Chen S; Han X Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374537 [TBL] [Abstract][Full Text] [Related]
6. Building and Breaking Bonds by Homogenous Nucleation in Glass-Forming Melts Leading to Transitions in Three Liquid States. Tournier RF; Ojovan MI Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925086 [TBL] [Abstract][Full Text] [Related]
7. First-Order Liquid-Liquid Transition without Density Discontinuity in Molten Sodium Acetate Trihydrate and Its Influence on Crystallization. Liu X; Liu S; Chen E; Peng L; Yu Y J Phys Chem Lett; 2019 Aug; 10(15):4285-4290. PubMed ID: 31318570 [TBL] [Abstract][Full Text] [Related]
8. Decoupling of component diffusion in a glass-forming Zr(46.75)Ti(8.25)Cu(7.5)Ni(10)Be(27.5) melt far above the liquidus temperature. Basuki SW; Bartsch A; Yang F; Rätzke K; Meyer A; Faupel F Phys Rev Lett; 2014 Oct; 113(16):165901. PubMed ID: 25361269 [TBL] [Abstract][Full Text] [Related]
9. New divergent dynamics in the isotropic to nematic phase transition of liquid crystals measured with 2D IR vibrational echo spectroscopy. Sokolowsky KP; Bailey HE; Fayer MD J Chem Phys; 2014 Nov; 141(19):194502. PubMed ID: 25416893 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data. Loncharich RJ; Brooks BR J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714 [TBL] [Abstract][Full Text] [Related]
11. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids. Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827 [TBL] [Abstract][Full Text] [Related]
12. Relation between superheated temperature and cooling rate for deep supercooled niobium melt. Sun H; Jian Z; Jiang B; Xu J; Zhang T RSC Adv; 2019 Feb; 9(10):5815-5824. PubMed ID: 35515948 [TBL] [Abstract][Full Text] [Related]
13. A computational study of diffusion in a glass-forming metallic liquid. Wang T; Zhang F; Yang L; Fang XW; Zhou SH; Kramer MJ; Wang CZ; Ho KM; Napolitano RE Sci Rep; 2015 Jun; 5():10956. PubMed ID: 26055394 [TBL] [Abstract][Full Text] [Related]
14. Texturing by cooling a metallic melt in a magnetic field. Tournier RF; Beaugnon E Sci Technol Adv Mater; 2009 Feb; 10(1):014501. PubMed ID: 27877251 [TBL] [Abstract][Full Text] [Related]
15. Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid. Porpora G; Rusciano F; Pastore R; Greco F Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408916 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Refinement of Al-Zn-Mg-Cu-Zr Alloy via Internal Cooling with Annular Electromagnetic Stirring above the Liquidus Temperature. Guan T; Zhang Z; Bai Y; Li B; Wang P Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31340535 [TBL] [Abstract][Full Text] [Related]
17. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation. Kuhnhold A; Paul W J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474 [TBL] [Abstract][Full Text] [Related]
18. Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules. Kaseman DC; Gulbiten O; Aitken BG; Sen S J Chem Phys; 2016 May; 144(17):174501. PubMed ID: 27155639 [TBL] [Abstract][Full Text] [Related]
19. Why Is the Range of Timescale So Wide in Glass-Forming Liquid? Egami T; Ryu CW Front Chem; 2020; 8():579169. PubMed ID: 33134277 [TBL] [Abstract][Full Text] [Related]
20. The glass transition and diffusion in simulated liquid TiO Hoang VV J Phys Condens Matter; 2007 Oct; 19(41):416109. PubMed ID: 28192341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]