These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26165855)

  • 21. Liquid-liquid transition in a strong bulk metallic glass-forming liquid.
    Wei S; Yang F; Bednarcik J; Kaban I; Shuleshova O; Meyer A; Busch R
    Nat Commun; 2013; 4():2083. PubMed ID: 23817404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-particle dynamics near the glass transition of a metallic glass.
    Lü YJ; Wang WH
    Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid.
    Kurtuldu G; Shamlaye KF; Löffler JF
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6123-6128. PubMed ID: 29793938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discontinuity in Fast Dynamics at the Glass Transition of ortho-Terphenyl.
    Hoffman DJ; Fayer MD
    J Phys Chem B; 2017 Nov; 121(45):10417-10428. PubMed ID: 29039665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations--Existence of infinite overlapping networks in a fragile ionic liquid.
    Habasaki J; Ngai KL
    J Chem Phys; 2015 Apr; 142(16):164501. PubMed ID: 25933768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.
    Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of bond orientational ordering in glass transition and crystallization.
    Tanaka H
    J Phys Condens Matter; 2011 Jul; 23(28):284115. PubMed ID: 21709320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural signature and transition dynamics of Sb
    Guo YR; Dong F; Qiao C; Wang JJ; Wang SY; Xu M; Zheng YX; Zhang RJ; Chen LY; Wang CZ; Ho KM
    Phys Chem Chem Phys; 2018 May; 20(17):11768-11775. PubMed ID: 29651485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of rare earth metals on volumetric characteristics of Al-Ni-Co-R alloys in crystalline and liquid states.
    Rusanov BA; Sidorov VE
    J Phys Condens Matter; 2023 Apr; 35(29):. PubMed ID: 37068489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics at the crystal-melt interface in a supercooled chalcogenide liquid near the glass transition.
    Li J; Jangid R; Zhu W; Kohne C; Fluerasu A; Zhang Y; Sen S; Kukreja R
    Sci Rep; 2020 Apr; 10(1):5881. PubMed ID: 32246019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy.
    Zhang P; Maldonis JJ; Liu Z; Schroers J; Voyles PM
    Nat Commun; 2018 Mar; 9(1):1129. PubMed ID: 29555920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition.
    Zhang H; Wang X; Zhang J; Yu HB; Douglas JF
    Eur Phys J E Soft Matter; 2023 Jun; 46(6):50. PubMed ID: 37380868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of attractions on correlation length scales in a glass-forming liquid.
    Xu WS; Sun ZY; An LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041506. PubMed ID: 23214590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics and Diffusion Mechanism of Low-Density Liquid Silicon.
    Shen B; Wang ZY; Dong F; Guo YR; Zhang RJ; Zheng YX; Wang SY; Wang CZ; Ho KM; Chen LY
    J Phys Chem B; 2015 Nov; 119(47):14945-51. PubMed ID: 26540341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural probe of a glass-forming liquid: generalized compressibility.
    Carruzzo HM; Yu CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021204. PubMed ID: 12241161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.