BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26165983)

  • 1. Photoluminescence of a Plasmonic Molecule.
    Huang D; Byers CP; Wang LY; Hoggard A; Hoener B; Dominguez-Medina S; Chen S; Chang WS; Landes CF; Link S
    ACS Nano; 2015 Jul; 9(7):7072-9. PubMed ID: 26165983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling.
    Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ
    ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy.
    Guan Z; Gao N; Jiang XF; Yuan P; Han F; Xu QH
    J Am Chem Soc; 2013 May; 135(19):7272-7. PubMed ID: 23607514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescence spectra and quantum yields of gold nanosphere monomers and dimers in aqueous suspension.
    Loumaigne M; Laurent G; Werts MH; Débarre A
    Phys Chem Chem Phys; 2016 Dec; 18(48):33264-33273. PubMed ID: 27896357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods.
    Bouhelier A; Bachelot R; Lerondel G; Kostcheev S; Royer P; Wiederrecht GP
    Phys Rev Lett; 2005 Dec; 95(26):267405. PubMed ID: 16486405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.
    Walsh GF; Dal Negro L
    Nano Lett; 2013 Feb; 13(2):786-92. PubMed ID: 23339774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and Hydrodynamic Characterisation of DNA-Linked Gold Nanoparticle Dimers in Solution using Two-Photon Photoluminescence.
    Midelet J; El-Sagheer AH; Brown T; Kanaras AG; Débarre A; Werts MHV
    Chemphyschem; 2018 Apr; 19(7):827-836. PubMed ID: 29465817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission.
    Ostovar B; Cai YY; Tauzin LJ; Lee SA; Ahmadivand A; Zhang R; Nordlander P; Link S
    ACS Nano; 2020 Nov; 14(11):15757-15765. PubMed ID: 32852941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods.
    Zhang W; Caldarola M; Lu X; Orrit M
    ACS Photonics; 2018 Jul; 5(7):2960-2968. PubMed ID: 30057930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity.
    Sivun D; Vidal C; Munkhbat B; Arnold N; Klar TA; Hrelescu C
    Nano Lett; 2016 Nov; 16(11):7203-7209. PubMed ID: 27700125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation.
    Zheng Z; Majima T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2879-83. PubMed ID: 26804726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy.
    Jiang XF; Pan Y; Jiang C; Zhao T; Yuan P; Venkatesan T; Xu QH
    J Phys Chem Lett; 2013 May; 4(10):1634-8. PubMed ID: 26282970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer and depolarization in the photoluminescence of a plasmonic molecule.
    Yin T; Jiang L; Dong Z; Yang JK; Shen ZX
    Nanoscale; 2017 Feb; 9(5):2082-2087. PubMed ID: 28116398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Stokes Emission from Hot Carriers in Gold Nanorods.
    Cai YY; Sung E; Zhang R; Tauzin LJ; Liu JG; Ostovar B; Zhang Y; Chang WS; Nordlander P; Link S
    Nano Lett; 2019 Feb; 19(2):1067-1073. PubMed ID: 30657694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.