These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 26166134)
1. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds. Breynaert A; Bosscher D; Kahnt A; Claeys M; Cos P; Pieters L; Hermans N Planta Med; 2015 Aug; 81(12-13):1075-83. PubMed ID: 26166134 [TBL] [Abstract][Full Text] [Related]
2. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Gumienna M; Lasik M; Czarnecki Z Int J Food Sci Nutr; 2011 May; 62(3):226-33. PubMed ID: 21138407 [TBL] [Abstract][Full Text] [Related]
3. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Gonthier MP; Remesy C; Scalbert A; Cheynier V; Souquet JM; Poutanen K; Aura AM Biomed Pharmacother; 2006 Nov; 60(9):536-40. PubMed ID: 16978827 [TBL] [Abstract][Full Text] [Related]
4. Optimization of an in vitro gut microbiome biotransformation platform with chlorogenic acid as model compound: From fecal sample to biotransformation product identification. Mortelé O; Iturrospe E; Breynaert A; Verdickt E; Xavier BB; Lammens C; Malhotra-Kumar S; Jorens PG; Pieters L; van Nuijs ALN; Hermans N J Pharm Biomed Anal; 2019 Oct; 175():112768. PubMed ID: 31398630 [TBL] [Abstract][Full Text] [Related]
5. Catabolism of coffee chlorogenic acids by human colonic microbiota. Ludwig IA; Paz de Peña M; Concepción C; Alan C Biofactors; 2013; 39(6):623-32. PubMed ID: 23904092 [TBL] [Abstract][Full Text] [Related]
6. Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: the effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota. Domínguez-Fernández M; Ludwig IA; De Peña MP; Cid C Food Funct; 2021 Mar; 12(5):1996-2011. PubMed ID: 33537693 [TBL] [Abstract][Full Text] [Related]
8. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. Konishi Y; Kobayashi S J Agric Food Chem; 2004 May; 52(9):2518-26. PubMed ID: 15113150 [TBL] [Abstract][Full Text] [Related]
9. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Correa-Betanzo J; Allen-Vercoe E; McDonald J; Schroeter K; Corredig M; Paliyath G Food Chem; 2014 Dec; 165():522-31. PubMed ID: 25038707 [TBL] [Abstract][Full Text] [Related]
10. Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Barroso E; Van de Wiele T; Jiménez-Girón A; Muñoz-González I; Martín-Alvarez PJ; Moreno-Arribas MV; Bartolomé B; Peláez C; Martínez-Cuesta MC; Requena T Appl Microbiol Biotechnol; 2014 Aug; 98(15):6805-15. PubMed ID: 24764016 [TBL] [Abstract][Full Text] [Related]
11. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. Anson NM; Selinheimo E; Havenaar R; Aura AM; Mattila I; Lehtinen P; Bast A; Poutanen K; Haenen GR J Agric Food Chem; 2009 Jul; 57(14):6148-55. PubMed ID: 19537710 [TBL] [Abstract][Full Text] [Related]
12. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Parkar SG; Trower TM; Stevenson DE Anaerobe; 2013 Oct; 23():12-9. PubMed ID: 23916722 [TBL] [Abstract][Full Text] [Related]
13. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. Vetrani C; Rivellese AA; Annuzzi G; Adiels M; Borén J; Mattila I; Orešič M; Aura AM J Nutr Biochem; 2016 Jul; 33():111-8. PubMed ID: 27155917 [TBL] [Abstract][Full Text] [Related]
14. Hasyima Omar M; González Barrio R; Pereira-Caro G; Almutairi TM; Crozier A Int J Food Sci Nutr; 2021 Jun; 72(4):511-517. PubMed ID: 33238790 [TBL] [Abstract][Full Text] [Related]
15. Structure- and dose-absorption relationships of coffee polyphenols. Erk T; Hauser J; Williamson G; Renouf M; Steiling H; Dionisi F; Richling E Biofactors; 2014; 40(1):103-12. PubMed ID: 23553742 [TBL] [Abstract][Full Text] [Related]
16. In vitro colonic catabolism of orange juice (poly)phenols. Pereira-Caro G; Borges G; Ky I; Ribas A; Calani L; Del Rio D; Clifford MN; Roberts SA; Crozier A Mol Nutr Food Res; 2015 Mar; 59(3):465-75. PubMed ID: 25545994 [TBL] [Abstract][Full Text] [Related]
17. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives. Vollmer M; Schröter D; Esders S; Neugart S; Farquharson FM; Duncan SH; Schreiner M; Louis P; Maul R; Rohn S Food Res Int; 2017 Oct; 100(Pt 3):375-384. PubMed ID: 28964360 [TBL] [Abstract][Full Text] [Related]
18. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): in vitro bio-accessibility, intestinal uptake and bioavailability. D'Antuono I; Garbetta A; Linsalata V; Minervini F; Cardinali A Food Funct; 2015 Apr; 6(4):1268-77. PubMed ID: 25758164 [TBL] [Abstract][Full Text] [Related]
19. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis. Attri S; Sharma K; Raigond P; Goel G Food Res Int; 2018 Mar; 105():324-332. PubMed ID: 29433221 [TBL] [Abstract][Full Text] [Related]
20. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Dall'Asta M; Calani L; Tedeschi M; Jechiu L; Brighenti F; Del Rio D Nutrition; 2012 Feb; 28(2):197-203. PubMed ID: 22208556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]