BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26166134)

  • 61. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid.
    Sato Y; Itagaki S; Kurokawa T; Ogura J; Kobayashi M; Hirano T; Sugawara M; Iseki K
    Int J Pharm; 2011 Jan; 403(1-2):136-8. PubMed ID: 20933071
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In Vitro Intestinal Bioaccessibility and Colonic Biotransformation of Polyphenols from Mini Bell Peppers (Capsicum annuum L.).
    Cárdenas-Castro AP; Rochín-Medina JJ; Ramírez K; Tovar J; Sáyago-Ayerdi SG
    Plant Foods Hum Nutr; 2022 Mar; 77(1):77-82. PubMed ID: 35020097
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System.
    Sadeghi Ekbatan S; Iskandar MM; Sleno L; Sabally K; Khairallah J; Prakash S; Kubow S
    Foods; 2018 Jan; 7(1):. PubMed ID: 29329242
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria.
    Tamargo A; Cueva C; Taladrid D; Khoo C; Moreno-Arribas MV; Bartolomé B; González de Llano D
    Food Chem; 2022 Jan; 368():130871. PubMed ID: 34438174
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Absorption and metabolism of yerba mate phenolic compounds in humans.
    Gómez-Juaristi M; Martínez-López S; Sarria B; Bravo L; Mateos R
    Food Chem; 2018 Feb; 240():1028-1038. PubMed ID: 28946219
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.
    Alqurashi RM; Alarifi SN; Walton GE; Costabile AF; Rowland IR; Commane DM
    Food Chem; 2017 Nov; 234():190-198. PubMed ID: 28551224
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flux analysis of the human proximal colon using anaerobic digestion model 1.
    Motelica-Wagenaar AM; Nauta A; van den Heuvel EG; Kleerebezem R
    Anaerobe; 2014 Aug; 28():137-48. PubMed ID: 24880006
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.
    Barroso E; Sánchez-Patán F; Martín-Alvarez PJ; Bartolomé B; Moreno-Arribas MV; Peláez C; Requena T; van de Wiele T; Martínez-Cuesta MC
    J Agric Food Chem; 2013 Oct; 61(42):10163-72. PubMed ID: 24073689
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion.
    Viuda-Martos M; Lucas-Gonzalez R; Ballester-Costa C; Pérez-Álvarez JA; Muñoz LA; Fernández-López J
    Food Funct; 2018 Jan; 9(1):573-584. PubMed ID: 29265144
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects.
    Pérez-Jiménez J; Díaz-Rubio ME; Saura-Calixto F
    Nutr Res Rev; 2013 Dec; 26(2):118-29. PubMed ID: 23930641
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds.
    Jenner AM; Rafter J; Halliwell B
    Free Radic Biol Med; 2005 Mar; 38(6):763-72. PubMed ID: 15721987
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Colonic availability of apple polyphenols--a study in ileostomy subjects.
    Kahle K; Kraus M; Scheppach W; Richling E
    Mol Nutr Food Res; 2005 Dec; 49(12):1143-50. PubMed ID: 16252309
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bioavailability and nutrikinetics of rosemary tea phenolic compounds in humans.
    Achour M; Bravo L; Sarriá B; Ben Fredj M; Nouira M; Mtiraoui A; Saguem S; Mateos R
    Food Res Int; 2021 Jan; 139():109815. PubMed ID: 33509454
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In Vitro Gut Metabolism of [U-
    Naranjo Pinta M; Montoliu I; Aura AM; Seppänen-Laakso T; Barron D; Moco S
    Mol Nutr Food Res; 2018 Nov; 62(22):e1800396. PubMed ID: 30113130
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stability of polyphenols and carotenoids in strawberry and peach yoghurt throughout in vitro gastrointestinal digestion.
    Oliveira A; Pintado M
    Food Funct; 2015 May; 6(5):1611-9. PubMed ID: 25882006
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Study of the catabolism of thyme phenols combining in vitro fermentation and human intervention.
    Mosele JI; Martín-Peláez S; Macià A; Farràs M; Valls RM; Catalán Ú; Motilva MJ
    J Agric Food Chem; 2014 Nov; 62(45):10954-61. PubMed ID: 25339317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice.
    Ohnishi R; Ito H; Iguchi A; Shinomiya K; Kamei C; Hatano T; Yoshida T
    Biosci Biotechnol Biochem; 2006 Oct; 70(10):2560-3. PubMed ID: 17031047
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gastrointestinal stability of urolithins: an in vitro approach.
    Mena P; Dall'Asta M; Calani L; Brighenti F; Del Rio D
    Eur J Nutr; 2017 Feb; 56(1):99-106. PubMed ID: 26439723
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota.
    Lee HC; Jenner AM; Low CS; Lee YK
    Res Microbiol; 2006 Nov; 157(9):876-84. PubMed ID: 16962743
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion.
    Rodríguez-Roque MJ; Rojas-Graü MA; Elez-Martínez P; Martín-Belloso O
    Food Chem; 2013 Jan; 136(1):206-12. PubMed ID: 23017414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.