BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26166409)

  • 1. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
    DeLoache WC; Russ ZN; Narcross L; Gonzales AM; Martin VJ; Dueber JE
    Nat Chem Biol; 2015 Jul; 11(7):465-71. PubMed ID: 25984720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast.
    Payne JT; Valentic TR; Smolke CD
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.
    Pyne ME; Narcross L; Fossati E; Bourgeois L; Burton E; Gold ND; Martin VJ
    Methods Enzymol; 2016; 575():195-224. PubMed ID: 27417930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast.
    Morris JS; Dastmalchi M; Li J; Chang L; Chen X; Hagel JM; Facchini PJ
    Methods Enzymol; 2016; 575():143-78. PubMed ID: 27417928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway elucidation and microbial synthesis of proaporphine and bis-benzylisoquinoline alkaloids from sacred lotus (Nelumbo nucifera).
    Pyne ME; Gold ND; Martin VJJ
    Metab Eng; 2023 May; 77():162-173. PubMed ID: 37004909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids.
    Wang Y; Tappertzhofen N; Méndez-Sánchez D; Bawn M; Lyu B; Ward JM; Hailes HC
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10120-10125. PubMed ID: 31100182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial production of plant benzylisoquinoline alkaloids.
    Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids.
    Pyne ME; Kevvai K; Grewal PS; Narcross L; Choi B; Bourgeois L; Dueber JE; Martin VJJ
    Nat Commun; 2020 Jul; 11(1):3337. PubMed ID: 32620756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis.
    Takenaka M; Kamasaka K; Daryong K; Tsuchikane K; Miyazawa S; Fujihana S; Hori Y; Vavricka CJ; Hosoyama A; Kawasaki H; Shirai T; Araki M; Nakagawa A; Minami H; Kondo A; Hasunuma T
    Microb Cell Fact; 2024 Jun; 23(1):178. PubMed ID: 38879464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering strategies for the fermentative production of plant alkaloids in yeast.
    Trenchard IJ; Smolke CD
    Metab Eng; 2015 Jul; 30():96-104. PubMed ID: 25981946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.
    Gao M; Zhao Y; Yao Z; Su Q; Van Beek P; Shao Z
    Nat Commun; 2023 Nov; 14(1):7797. PubMed ID: 38016984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases.
    Morris JS; Yu L; Facchini PJ
    Phytochemistry; 2020 Feb; 170():112193. PubMed ID: 31765874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Factories for the Production of Benzylisoquinoline Alkaloids.
    Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ
    Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method.
    Matsumura E; Nakagawa A; Tomabechi Y; Koyanagi T; Kumagai H; Yamamoto K; Katayama T; Sato F; Minami H
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):396-402. PubMed ID: 27740901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives.
    Hafner J; Payne J; MohammadiPeyhani H; Hatzimanikatis V; Smolke C
    Nat Commun; 2021 Mar; 12(1):1760. PubMed ID: 33741955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli.
    Guo D; Kong S; Sun Y; Li X; Pan H
    Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy.
    Morris JS; Facchini PJ
    J Biol Chem; 2016 Nov; 291(45):23416-23427. PubMed ID: 27634038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.