These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 26166409)
1. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409 [TBL] [Abstract][Full Text] [Related]
2. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. DeLoache WC; Russ ZN; Narcross L; Gonzales AM; Martin VJ; Dueber JE Nat Chem Biol; 2015 Jul; 11(7):465-71. PubMed ID: 25984720 [TBL] [Abstract][Full Text] [Related]
3. Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast. Payne JT; Valentic TR; Smolke CD Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903659 [TBL] [Abstract][Full Text] [Related]
4. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Hawkins KM; Smolke CD Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217 [TBL] [Abstract][Full Text] [Related]
5. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids. Pyne ME; Narcross L; Fossati E; Bourgeois L; Burton E; Gold ND; Martin VJ Methods Enzymol; 2016; 575():195-224. PubMed ID: 27417930 [TBL] [Abstract][Full Text] [Related]
7. Pathway elucidation and microbial synthesis of proaporphine and bis-benzylisoquinoline alkaloids from sacred lotus (Nelumbo nucifera). Pyne ME; Gold ND; Martin VJJ Metab Eng; 2023 May; 77():162-173. PubMed ID: 37004909 [TBL] [Abstract][Full Text] [Related]
8. Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids. Wang Y; Tappertzhofen N; Méndez-Sánchez D; Bawn M; Lyu B; Ward JM; Hailes HC Angew Chem Int Ed Engl; 2019 Jul; 58(30):10120-10125. PubMed ID: 31100182 [TBL] [Abstract][Full Text] [Related]
9. Microbial production of plant benzylisoquinoline alkaloids. Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807 [TBL] [Abstract][Full Text] [Related]
10. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Pyne ME; Kevvai K; Grewal PS; Narcross L; Choi B; Bourgeois L; Dueber JE; Martin VJJ Nat Commun; 2020 Jul; 11(1):3337. PubMed ID: 32620756 [TBL] [Abstract][Full Text] [Related]
11. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis. Takenaka M; Kamasaka K; Daryong K; Tsuchikane K; Miyazawa S; Fujihana S; Hori Y; Vavricka CJ; Hosoyama A; Kawasaki H; Shirai T; Araki M; Nakagawa A; Minami H; Kondo A; Hasunuma T Microb Cell Fact; 2024 Jun; 23(1):178. PubMed ID: 38879464 [TBL] [Abstract][Full Text] [Related]
12. Optimization of yeast-based production of medicinal protoberberine alkaloids. Galanie S; Smolke CD Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732 [TBL] [Abstract][Full Text] [Related]
13. Engineering strategies for the fermentative production of plant alkaloids in yeast. Trenchard IJ; Smolke CD Metab Eng; 2015 Jul; 30():96-104. PubMed ID: 25981946 [TBL] [Abstract][Full Text] [Related]
14. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Gao M; Zhao Y; Yao Z; Su Q; Van Beek P; Shao Z Nat Commun; 2023 Nov; 14(1):7797. PubMed ID: 38016984 [TBL] [Abstract][Full Text] [Related]
15. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. Morris JS; Yu L; Facchini PJ Phytochemistry; 2020 Feb; 170():112193. PubMed ID: 31765874 [TBL] [Abstract][Full Text] [Related]
16. Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900 [TBL] [Abstract][Full Text] [Related]
17. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Matsumura E; Nakagawa A; Tomabechi Y; Koyanagi T; Kumagai H; Yamamoto K; Katayama T; Sato F; Minami H Biosci Biotechnol Biochem; 2017 Feb; 81(2):396-402. PubMed ID: 27740901 [TBL] [Abstract][Full Text] [Related]
18. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Hafner J; Payne J; MohammadiPeyhani H; Hatzimanikatis V; Smolke C Nat Commun; 2021 Mar; 12(1):1760. PubMed ID: 33741955 [TBL] [Abstract][Full Text] [Related]
19. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli. Guo D; Kong S; Sun Y; Li X; Pan H Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913 [TBL] [Abstract][Full Text] [Related]
20. Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy. Morris JS; Facchini PJ J Biol Chem; 2016 Nov; 291(45):23416-23427. PubMed ID: 27634038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]