BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 26166604)

  • 1. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
    Fukushima A; Milner K; Gupta A; Lopaschuk GD
    Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Modulators in Heart Disease: Past, Present, and Future.
    Lopaschuk GD
    Can J Cardiol; 2017 Jul; 33(7):838-849. PubMed ID: 28279520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
    Jaswal JS; Keung W; Wang W; Ussher JR; Lopaschuk GD
    Biochim Biophys Acta; 2011 Jul; 1813(7):1333-50. PubMed ID: 21256164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac Energy Metabolism in Heart Failure.
    Lopaschuk GD; Karwi QG; Tian R; Wende AR; Abel ED
    Circ Res; 2021 May; 128(10):1487-1513. PubMed ID: 33983836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting mitochondrial oxidative metabolism as an approach to treat heart failure.
    Fillmore N; Lopaschuk GD
    Biochim Biophys Acta; 2013 Apr; 1833(4):857-65. PubMed ID: 22960640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation.
    Dong Z; Zhao P; Xu M; Zhang C; Guo W; Chen H; Tian J; Wei H; Lu R; Cao T
    Sci Rep; 2017 Jun; 7(1):2691. PubMed ID: 28578382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure.
    Scolletta S; Biagioli B
    Biomed Pharmacother; 2010 Mar; 64(3):203-7. PubMed ID: 19954925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1525-34. PubMed ID: 26996746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
    Kaimoto S; Hoshino A; Ariyoshi M; Okawa Y; Tateishi S; Ono K; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H305-H313. PubMed ID: 28011586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and genetic regulation of cardiac energy substrate preference.
    Kodde IF; van der Stok J; Smolenski RT; de Jong JW
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):26-39. PubMed ID: 17081788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1.
    Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting fatty acid metabolism in heart failure: is it a suitable therapeutic approach?
    Arumugam S; Sreedhar R; Thandavarayan RA; Karuppagounder V; Watanabe K
    Drug Discov Today; 2016 Jun; 21(6):1003-8. PubMed ID: 26905600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome?
    van Bilsen M; Smeets PJ; Gilde AJ; van der Vusse GJ
    Cardiovasc Res; 2004 Feb; 61(2):218-26. PubMed ID: 14736538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart.
    Wang J; Bai L; Li J; Sun C; Zhao J; Cui C; Han K; Liu Y; Zhuo X; Wang T; Liu P; Fan F; Guan Y; Ma A
    Sci China C Life Sci; 2009 Nov; 52(11):1003-10. PubMed ID: 19937197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.