BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26166848)

  • 1. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to
    Habibi-Yangjeh A; Danandeh-Jenagharad M
    Monatsh Chem; 2009; 140(11):1279-1288. PubMed ID: 26166848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR Models for Predicting Aquatic Toxicity of Esters Using Genetic Algorithm-Multiple Linear Regression Methods.
    Rajabi M; Shafiei F
    Comb Chem High Throughput Screen; 2019 Aug; 22(5):317-325. PubMed ID: 31215375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Relationship Study of Octanol-Water Partition Coefficient of Some Sulfa Drugs Using GA-MLR and GA-ANN Methods.
    Dadfar E; Shafiei F; Isfahani TM
    Curr Comput Aided Drug Des; 2020; 16(3):207-221. PubMed ID: 32507103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine.
    Fatemi MH; Gharaghani S
    Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR.
    Habibi-Yangjeh A; Danandeh-Jenagharad M; Nooshyar M
    J Mol Model; 2006 Feb; 12(3):338-47. PubMed ID: 16344950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds.
    Jalali-Heravi M; Garkani-Nejad Z
    J Chromatogr A; 2002 Feb; 945(1-2):173-84. PubMed ID: 11860134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of glass transition temperature (T(g)) of some compounds in organic electroluminescent devices with their molecular properties.
    Kim YS; Kim JH; Kim JS; No KT
    J Chem Inf Comput Sci; 2002; 42(1):75-81. PubMed ID: 11855969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of toxicity using a novel RBF neural network training methodology.
    Melagraki G; Afantitis A; Makridima K; Sarimveis H; Igglessi-Markopoulou O
    J Mol Model; 2006 Feb; 12(3):297-305. PubMed ID: 16283121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts.
    Xie W; Wiriyarattanakul S; Rungrotmongkol T; Shi L; Wiriyarattanakul A; Maitarad P
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the aggregation number of cationic surfactants based on ANN-QSAR modeling approaches: understanding the impact of molecular descriptors on aggregation numbers.
    Abdous B; Sajjadi SM; Bagheri A
    RSC Adv; 2022 Nov; 12(52):33666-33678. PubMed ID: 36505704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two QSAR models for predicting the toxicity of chemicals towards
    Jia Q; Wang S; Yu M; Wang Q; Yan F
    SAR QSAR Environ Res; 2023 Feb; 34(2):147-161. PubMed ID: 36749040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds.
    Shi Y
    Sci Rep; 2021 Apr; 11(1):8806. PubMed ID: 33888843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks.
    Kahn I; Sild S; Maran U
    J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.