These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26167144)

  • 1. Slowing DNA Transport Using Graphene-DNA Interactions.
    Banerjee S; Wilson J; Shim J; Shankla M; Corbin EA; Aksimentiev A; Bashir R
    Adv Funct Mater; 2015 Feb; 25(6):936-946. PubMed ID: 26167144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS
    Luan B; Zhou R
    ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore.
    Balasubramanian R; Pal S; Rao A; Naik A; Chakraborty B; Maiti PK; Varma MM
    ACS Appl Bio Mater; 2021 Jan; 4(1):451-461. PubMed ID: 35014296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS
    Zou A; Xiu P; Ou X; Zhou R
    J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.
    Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA translocation through single-layer boron nitride nanopores.
    Gu Z; Zhang Y; Luan B; Zhou R
    Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations.
    H H; Mallajosyula SS
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55095-55108. PubMed ID: 37965826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on single biomolecule sensing using MoS
    Gu C; Yu Z; Li X; Zhu X; Jin C; Cao Z; Dong S; Luo J; Ye Z; Liu Y
    Nanoscale; 2022 Dec; 15(1):266-274. PubMed ID: 36477179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of nucleotides in hydrated ssDNA via 2D h-BN nanopore with ionic-liquid/salt-water interface.
    Lee JS; Oviedo JP; Bandara YMNDY; Peng X; Xia L; Wang Q; Garcia K; Wang J; Kim MJ; Kim MJ
    Electrophoresis; 2021 Apr; 42(7-8):991-1002. PubMed ID: 33570197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
    Zhang X; van Deursen PMG; Fu W; Schneider GF
    ACS Sens; 2020 Aug; 5(8):2317-2325. PubMed ID: 32573208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and electronic transport properties of DNA translocation through graphene nanopores.
    Avdoshenko SM; Nozaki D; Gomes da Rocha C; González JW; Lee MH; Gutierrez R; Cuniberti G
    Nano Lett; 2013 May; 13(5):1969-76. PubMed ID: 23586585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes.
    Venkatesan BM; Estrada D; Banerjee S; Jin X; Dorgan VE; Bae MH; Aluru NR; Pop E; Bashir R
    ACS Nano; 2012 Jan; 6(1):441-50. PubMed ID: 22165962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.
    Luan B; Wang D; Zhou R; Harrer S; Peng H; Stolovitzky G
    Nanotechnology; 2012 Nov; 23(45):455102. PubMed ID: 23064727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.