These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26167200)

  • 1. Accelerated Compressed Sensing Based CT Image Reconstruction.
    Hashemi S; Beheshti S; Gill PR; Paul NS; Cobbold RS
    Comput Math Methods Med; 2015; 2015():161797. PubMed ID: 26167200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: phantom studies.
    Niu T; Zhu L
    Med Phys; 2012 Jul; 39(7):4588-98. PubMed ID: 22830790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm.
    Vaegler S; Stsepankou D; Hesser J; Sauer O
    Z Med Phys; 2015 Dec; 25(4):375-390. PubMed ID: 26422578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT.
    Ramirez-Giraldo JC; Trzasko J; Leng S; Yu L; Manduca A; McCollough CH
    Med Phys; 2011 Apr; 38(4):2157-67. PubMed ID: 21626949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging.
    Li X; Luo S
    Biomed Eng Online; 2011 Aug; 10():73. PubMed ID: 21849088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm.
    de las Heras H; Tischenko O; Xu Y; Hoeschen C
    Z Med Phys; 2008; 18(1):7-16. PubMed ID: 18524383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CT Reconstruction Algorithm Based on L1/2 Regularization.
    Chen M; Mi D; He P; Deng L; Wei B
    Comput Math Methods Med; 2014; 2014():862910. PubMed ID: 24834109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT.
    Yan B; Jin Z; Zhang H; Li L; Cai A
    Comput Math Methods Med; 2015; 2015():691021. PubMed ID: 26120355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A differentiable Shepp-Logan phantom and its applications in exact cone-beam CT.
    Yu H; Zhao S; Wang G
    Phys Med Biol; 2005 Dec; 50(23):5583-95. PubMed ID: 16306654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary computed tomography with source and detector in linear symmetric geometry: Direct filtered backprojection reconstruction.
    Zhang T; Xing Y; Zhang L; Jin X; Gao H; Chen Z
    Med Phys; 2020 Jun; 47(5):2222-2236. PubMed ID: 32009236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dose Cone-Beam Computed Tomography Reconstruction through a fast Three-Dimensional Compressed Sensing Method Based on the Three-Dimensional Pseudo-polar Fourier Transform.
    Teyfouri N; Rabbani H; Jabbari I
    J Med Signals Sens; 2022; 12(1):8-24. PubMed ID: 35265461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel simulation-driven reconstruction approach for x-ray computed tomography.
    Hsieh J
    Med Phys; 2022 Apr; 49(4):2245-2258. PubMed ID: 35102555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved compressed sensing-based algorithm for sparse-view CT image reconstruction.
    Zhu Z; Wahid K; Babyn P; Cooper D; Pratt I; Carter Y
    Comput Math Methods Med; 2013; 2013():185750. PubMed ID: 23606898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CT reconstruction algorithm based on non-aliasing Contourlet transform and compressive sensing.
    Deng LZ; Feng P; Chen MY; He P; Vo QS; Wei B
    Comput Math Methods Med; 2014; 2014():753615. PubMed ID: 25101142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel extension of the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections.
    Chen GH; Leng S; Mistretta CA
    Med Phys; 2005 Mar; 32(3):654-65. PubMed ID: 15839337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system.
    Schmidt TG; Fahrig R; Pelc NJ
    Med Phys; 2005 Nov; 32(11):3234-45. PubMed ID: 16370414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast method based on NESTA to accurately reconstruct CT image from highly undersampled projection measurements.
    He Z; Qiao Q; Li J; Huang M; Zhu S; Huang L
    J Xray Sci Technol; 2016 Nov; 24(6):865-874. PubMed ID: 27612050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new adaptive-weighted total variation sparse-view computed tomography image reconstruction with local improved gradient information.
    Wang Y; Qi Z
    J Xray Sci Technol; 2018; 26(6):957-975. PubMed ID: 30149492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.