BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26167284)

  • 1. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration.
    Li JJ; Kim K; Roohani-Esfahani SI; Guo J; Kaplan DL; Zreiqat H
    J Mater Chem B; 2015 Jul; 3(26):5361-5376. PubMed ID: 26167284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cellularized Biphasic Implant Based on a Bioactive Silk Fibroin Promotes Integration and Tissue Organization during Osteochondral Defect Repair in a Porcine Model.
    Pérez-Silos V; Moncada-Saucedo NK; Peña-Martínez V; Lara-Arias J; Marino-Martínez IA; Camacho A; Romero-Díaz VJ; Lara Banda M; García-Ruiz A; Soto-Dominguez A; Rodriguez-Rocha H; López-Serna N; Tuan RS; Lin H; Fuentes-Mera L
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro.
    Klimek K; Benko A; Vandrovcova M; Travnickova M; Douglas TEL; Tarczynska M; Broz A; Gaweda K; Ginalska G; Bacakova L
    Biomater Adv; 2022 Apr; 135():212724. PubMed ID: 35929204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and in vitro osteogenic properties towards load-bearing applications.
    Li JJ; Roohani-Esfahani SI; Kim K; Kaplan DL; Zreiqat H
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1741-1753. PubMed ID: 26215082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects.
    Deng C; Yang J; He H; Ma Z; Wang W; Zhang Y; Li T; He C; Wang J
    Biomater Sci; 2021 Jul; 9(14):4891-4903. PubMed ID: 34047307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk-Bioactive Glass Composites.
    M JC; Reardon PJ; Konwarh R; Knowles JC; Mandal BB
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8000-8013. PubMed ID: 28181432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering.
    Singh YP; Moses JC; Bhunia BK; Nandi SK; Mandal BB
    J Mater Chem B; 2018 Sep; 6(36):5671-5688. PubMed ID: 32254974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells.
    Ding X; Zhu M; Xu B; Zhang J; Zhao Y; Ji S; Wang L; Wang L; Li X; Kong D; Ma X; Yang Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16696-705. PubMed ID: 25210952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomimetic Biphasic Scaffold Consisting of Decellularized Cartilage and Decalcified Bone Matrixes for Osteochondral Defect Repair.
    Cao R; Zhan A; Ci Z; Wang C; She Y; Xu Y; Xiao K; Xia H; Shen L; Meng D; Chen C
    Front Cell Dev Biol; 2021; 9():639006. PubMed ID: 33681223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine.
    Ramzan F; Salim A; Khan I
    Stem Cell Rev Rep; 2023 Aug; 19(6):1615-1634. PubMed ID: 37074547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering.
    Jiang W; Xiang X; Song M; Shen J; Shi Z; Huang W; Liu H
    Mater Today Bio; 2022 Dec; 17():100485. PubMed ID: 36388458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platelet-Derived Growth Factor-Functionalized Scaffolds for the Recruitment of Synovial Mesenchymal Stem Cells for Osteochondral Repair.
    Luo Y; Cao X; Chen J; Gu J; Yu H; Sun J; Zou J
    Stem Cells Int; 2022; 2022():2190447. PubMed ID: 35126525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.
    Bernhardt A; Paul B; Gelinsky M
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29534027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering.
    Da H; Jia SJ; Meng GL; Cheng JH; Zhou W; Xiong Z; Mu YJ; Liu J
    PLoS One; 2013; 8(1):e54838. PubMed ID: 23382984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and Characterization of a Novel Bilayer Nanocomposite Scaffold Composed of Chitosan/Si-nHap and Zein/POSS Structures for Osteochondral Tissue Regeneration.
    Tamburaci S; Cecen B; Ustun O; Ergur BU; Havitcioglu H; Tihminlioglu F
    ACS Appl Bio Mater; 2019 Apr; 2(4):1440-1455. PubMed ID: 35026919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering.
    Zhang W; Zhang Y; Zhang A; Ling C; Sheng R; Li X; Yao Q; Chen J
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112215. PubMed ID: 34225867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.