BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26167642)

  • 1. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.
    Alsteens D; Pfreundschuh M; Zhang C; Spoerri PM; Coughlin SR; Kobilka BK; Müller DJ
    Nat Methods; 2015 Sep; 12(9):845-851. PubMed ID: 26167642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM.
    Pfreundschuh M; Alsteens D; Wieneke R; Zhang C; Coughlin SR; Tampé R; Kobilka BK; Müller DJ
    Nat Commun; 2015 Nov; 6():8857. PubMed ID: 26561004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Plasticity of Human Protease-Activated Receptor 1 upon Antagonist- and Agonist-Binding.
    Spoerri PM; Sapra KT; Zhang C; Mari SA; Kato HE; Kobilka BK; Müller DJ
    Structure; 2019 Oct; 27(10):1517-1526.e3. PubMed ID: 31422910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.
    Spoerri PM; Kato HE; Pfreundschuh M; Mari SA; Serdiuk T; Thoma J; Sapra KT; Zhang C; Kobilka BK; Müller DJ
    Structure; 2018 Jun; 26(6):829-838.e4. PubMed ID: 29731231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy.
    Huang X; He J; Zhang HT; Sun K; Yang J; Wang H; Zhang H; Guo Z; Zha ZG; Zhou C
    Int J Nanomedicine; 2017; 12():8867-8886. PubMed ID: 29296081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM.
    Delguste M; Koehler M; Alsteens D
    Methods Mol Biol; 2018; 1814():483-514. PubMed ID: 29956251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM imaging of ligand binding to platelet integrin alphaIIbbeta3 receptors reconstituted into planar lipid bilayers.
    Hussain MA; Agnihotri A; Siedlecki CA
    Langmuir; 2005 Jul; 21(15):6979-86. PubMed ID: 16008412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscope studies of the fusion of floating lipid bilayers.
    Abdulreda MH; Moy VT
    Biophys J; 2007 Jun; 92(12):4369-78. PubMed ID: 17400691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Ligand-Binding Events and Free Energy Landscape while Imaging Membrane Receptors at Subnanometer Resolution.
    Pfreundschuh M; Harder D; Ucurum Z; Fotiadis D; Müller DJ
    Nano Lett; 2017 May; 17(5):3261-3269. PubMed ID: 28361535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces.
    Newton R; Delguste M; Koehler M; Dumitru AC; Laskowski PR; Müller DJ; Alsteens D
    Nat Protoc; 2017 Nov; 12(11):2275-2292. PubMed ID: 28981124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes.
    Raible M; Evstigneev M; Reimann P; Bartels FW; Ros R
    J Biotechnol; 2004 Aug; 112(1-2):13-23. PubMed ID: 15288937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submolecular probing of the complement C5a receptor-ligand binding reveals a cooperative two-site binding mechanism.
    Dumitru AC; Deepak RNVK; Liu H; Koehler M; Zhang C; Fan H; Alsteens D
    Commun Biol; 2020 Dec; 3(1):786. PubMed ID: 33339958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of transmembrane proteins directly incorporated within supported lipid bilayers using atomic force microscopy.
    Levy D; Milhiet PE
    Methods Mol Biol; 2013; 950():343-57. PubMed ID: 23086884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis.
    Norouzi D; Müller MM; Deserno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061914. PubMed ID: 17280103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective adhesion strength of specifically bound vesicles.
    Smith AS; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061902. PubMed ID: 16089760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of the multidimensionality of the free-energy landscapes of proteins revealed by mechanical probes.
    Yew ZT; Schlierf M; Rief M; Paci E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031923. PubMed ID: 20365786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins.
    Zocher M; Roos C; Wegmann S; Bosshart PD; Dötsch V; Bernhard F; Müller DJ
    ACS Nano; 2012 Jan; 6(1):961-71. PubMed ID: 22196235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling lipid/protein interaction in model lipid bilayers by Atomic Force Microscopy.
    Alessandrini A; Facci P
    J Mol Recognit; 2011; 24(3):387-96. PubMed ID: 21504015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease-activated receptor-1 can mediate responses to SFLLRN in thrombin-desensitized cells: evidence for a novel mechanism for preventing or terminating signaling by PAR1's tethered ligand.
    Hammes SR; Coughlin SR
    Biochemistry; 1999 Feb; 38(8):2486-93. PubMed ID: 10029543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands.
    Whited AM; Park PS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):56-68. PubMed ID: 23603221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.