These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26167642)

  • 61. Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.
    Barsegov V; Klimov DK; Thirumalai D
    Biophys J; 2006 Jun; 90(11):3827-41. PubMed ID: 16533852
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reversible mechanical unfolding of single ubiquitin molecules.
    Chyan CL; Lin FC; Peng H; Yuan JM; Chang CH; Lin SH; Yang G
    Biophys J; 2004 Dec; 87(6):3995-4006. PubMed ID: 15361414
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interaction forces between ternary lipid bilayers containing cholesterol.
    Kurniawan J; Yin NN; Liu GY; Kuhl TL
    Langmuir; 2014 May; 30(17):4997-5004. PubMed ID: 24716859
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transfer on hydrophobic substrates and AFM imaging of membrane proteins reconstituted in planar lipid bilayers.
    Seantier B; Dezi M; Gubellini F; Berquand A; Godefroy C; Dosset P; Lévy D; Milhiet PE
    J Mol Recognit; 2011; 24(3):461-6. PubMed ID: 21504024
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy.
    Dettmann W; Grandbois M; André S; Benoit M; Wehle AK; Kaltner H; Gabius HJ; Gaub HE
    Arch Biochem Biophys; 2000 Nov; 383(2):157-70. PubMed ID: 11185549
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A functional single-molecule binding assay via force spectroscopy.
    Cao Y; Balamurali MM; Sharma D; Li H
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15677-81. PubMed ID: 17895384
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Damping mechanism in dynamic force microscopy.
    Gauthier M; Tsukada M
    Phys Rev Lett; 2000 Dec; 85(25):5348-51. PubMed ID: 11135993
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers.
    Mecke A; Lee DK; Ramamoorthy A; Orr BG; Banaszak Holl MM
    Biophys J; 2005 Dec; 89(6):4043-50. PubMed ID: 16183881
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A new image correction method for live cell atomic force microscopy.
    Shen Y; Sun JL; Zhang A; Hu J; Xu LX
    Phys Med Biol; 2007 Apr; 52(8):2185-96. PubMed ID: 17404463
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer.
    Milhiet PE; Gubellini F; Berquand A; Dosset P; Rigaud JL; Le Grimellec C; Lévy D
    Biophys J; 2006 Nov; 91(9):3268-75. PubMed ID: 16905620
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Atomic force microscopy of lipid domains in supported model membranes.
    Burns AR
    Methods Mol Biol; 2007; 398():263-82. PubMed ID: 18214386
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atomic force microscopy of supported lipid bilayers.
    Mingeot-Leclercq MP; Deleu M; Brasseur R; Dufrêne YF
    Nat Protoc; 2008; 3(10):1654-9. PubMed ID: 18833202
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I.
    Pera I; Stark R; Kappl M; Butt HJ; Benfenati F
    Biophys J; 2004 Oct; 87(4):2446-55. PubMed ID: 15454442
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function.
    Alessandrini A; Facci P
    Micron; 2012 Dec; 43(12):1212-23. PubMed ID: 22503400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of flexible tethers in multiple ligand-receptor bond formation between curved surfaces.
    Moore NW; Kuhl TL
    Biophys J; 2006 Sep; 91(5):1675-87. PubMed ID: 16751237
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Probing the mechanical stability of proteins using the atomic force microscope.
    Brockwell DJ
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1564-8. PubMed ID: 18031267
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mutual modulation between membrane-embedded receptor clustering and ligand binding in lipid membranes.
    Tomas S; Milanesi L
    Nat Chem; 2010 Dec; 2(12):1077-83. PubMed ID: 21107373
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deciphering the energy landscape of the interaction uranyl-DCP with antibodies using dynamic force spectroscopy.
    Teulon JM; Parot P; Odorico M; Pellequer JL
    Biophys J; 2008 Nov; 95(10):L63-5. PubMed ID: 18790844
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Co-operative response of oligomeric protein receptors coupled to non-co-operative ligand binding.
    Levitzki A; Segel LA; Steer ML
    J Mol Biol; 1975 Jan; 91(1):125-30. PubMed ID: 1185773
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.