These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26167953)

  • 1. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities.
    Mondal S; Hsiao K; Goueli SA
    Assay Drug Dev Technol; 2015 Oct; 13(8):444-55. PubMed ID: 26167953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.
    Marshall CB; Meiri D; Smith MJ; Mazhab-Jafari MT; Gasmi-Seabrook GM; Rottapel R; Stambolic V; Ikura M
    Methods; 2012 Aug; 57(4):473-85. PubMed ID: 22750304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Rho GEF and GAP activity through a sensitive split luciferase assay system.
    Anderson EL; Hamann MJ
    Biochem J; 2012 Feb; 441(3):869-79. PubMed ID: 22004470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual specificity of a prokaryotic GTPase-activating protein (GAP) to two small Ras-like GTPases in Myxococcus xanthus.
    Kanade M; Singh NB; Lagad S; Baranwal J; Gayathri P
    FEBS J; 2021 Mar; 288(5):1565-1585. PubMed ID: 32772462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.
    Reichman M; Schabdach A; Kumar M; Zielinski T; Donover PS; Laury-Kleintop LD; Lowery RG
    J Biomol Screen; 2015 Dec; 20(10):1294-9. PubMed ID: 26195453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro GEF and GAP assays.
    Eberth A; Ahmadian MR
    Curr Protoc Cell Biol; 2009 Jun; Chapter 14():Unit 14.9. PubMed ID: 19499504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical assays to characterize Rho GTPases.
    Jaiswal M; Dubey BN; Koessmeier KT; Gremer L; Ahmadian MR
    Methods Mol Biol; 2012; 827():37-58. PubMed ID: 22144266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of small GTPases by GEFs, GAPs, and GDIs.
    Cherfils J; Zeghouf M
    Physiol Rev; 2013 Jan; 93(1):269-309. PubMed ID: 23303910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbations in the spi1p GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences.
    Matynia A; Dimitrov K; Mueller U; He X; Sazer S
    Mol Cell Biol; 1996 Nov; 16(11):6352-62. PubMed ID: 8887664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
    Boissier P; Huynh-Do U
    Cell Signal; 2014 Mar; 26(3):483-91. PubMed ID: 24308970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Ras cycling by Ca2+.
    Walker SA; Cullen PJ; Taylor JA; Lockyer PJ
    FEBS Lett; 2003 Jul; 546(1):6-10. PubMed ID: 12829229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases.
    Chopra P; Koduri H; Singh R; Koul A; Ghildiyal M; Sharma K; Tyagi AK; Singh Y
    FEBS Lett; 2004 Jul; 571(1-3):212-6. PubMed ID: 15280044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive regulation of Rho GTPase activity by RhoGDIs as a result of their direct interaction with GAPs.
    Ota T; Maeda M; Okamoto M; Tatsuka M
    BMC Syst Biol; 2015 Jan; 9():3. PubMed ID: 25628036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The guanine nucleotide-binding switch in three dimensions.
    Vetter IR; Wittinghofer A
    Science; 2001 Nov; 294(5545):1299-304. PubMed ID: 11701921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1.
    Zhang B; Zheng Y
    Biochemistry; 1998 Apr; 37(15):5249-57. PubMed ID: 9548756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel peptide recognized by RhoA GTPase.
    Drulis-Fajdasz D; Jelen F; Oleksy A; Otlewski J
    Acta Biochim Pol; 2006; 53(3):515-24. PubMed ID: 17019437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTP-specific fab fragment-based GTPase activity assay.
    Kopra K; Rozwandowicz-Jansen A; Syrjänpää M; Blaževitš O; Ligabue A; Veltel S; Lamminmäki U; Abankwa D; Härmä H
    Anal Chem; 2015 Mar; 87(6):3527-34. PubMed ID: 25707436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.
    Kopra K; Ligabue A; Wang Q; Syrjänpää M; Blaževitš O; Veltel S; van Adrichem AJ; Hänninen P; Abankwa D; Härmä H
    Anal Bioanal Chem; 2014 Jul; 406(17):4147-56. PubMed ID: 24760397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.