These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26168)

  • 1. Proton translocating ATPase: its pump, gate, and channel.
    Kagawa Y
    Adv Biophys; 1978; 10():209-47. PubMed ID: 26168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation by ATPase and bacteriorhodopsin.
    Kagawa Y; Ohno K; Yoshida M; Takeuchi Y; Sone N
    Fed Proc; 1977 May; 36(6):1815-8. PubMed ID: 15875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits.
    Yoshida M; Okamoto H; Sone N; Hirata H; Kagawa Y
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):936-40. PubMed ID: 139610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton translocating ATPase of a thermophilic bacterium. Morphology, subunits, and chemical composition.
    Kagawa Y; Sone N; Yoshida M; Hirata H; Okamoto H
    J Biochem; 1976 Jul; 80(1):141-51. PubMed ID: 134994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium.
    Okamoto H; Sone N; Hirata H; Yoshida M; Kagawa Y
    J Biol Chem; 1977 Sep; 252(17):6125-31. PubMed ID: 19467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4219-23. PubMed ID: 151864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of nutrients by a thermophilic bacterium--reconstruction of vesicles from crystalline ATPase or solubilized alanine carrier.
    Kagawa Y
    J Cell Physiol; 1976 Dec; 89(4):569-73. PubMed ID: 137906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial purification of active delta and epsilon subunits of the membrane ATPase from escherichia coli.
    Smith JB; Sternweis PC; Heppel LA
    J Supramol Struct; 1975; 3(3):248-55. PubMed ID: 127087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding sites for Mg(II) in H(+)-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324.
    Buy C; Matsui T; Andrianambinintsoa S; Sigalat C; Girault G; Zimmermann JL
    Biochemistry; 1996 Nov; 35(45):14281-93. PubMed ID: 8916914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 . F1) and effects of tyrosyl residue modification.
    Sone N; Hamamoto T; Kagawa Y
    J Biol Chem; 1981 Mar; 256(6):2873-7. PubMed ID: 6451621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of H+-ATPase.
    Kagawa Y; Sone N; Hirata H; Yoshida M
    J Bioenerg Biomembr; 1979 Aug; 11(3-4):39-78. PubMed ID: 233471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state kinetic analysis of an electroenzyme.
    Slayman CL; Sanders D
    Biochem Soc Symp; 1985; 50():11-29. PubMed ID: 2428368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically driven proton conduction in single delta-free F0F1-ATPase.
    Xiaolong L; Xiaoai Z; Yuanbo C; Jiachang Y; Zhiyong L; Peidong J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):752-7. PubMed ID: 16844089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCCD-sensitive ATPase (TF0 . F1) from a thermophilic bacterium: purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy transformation.
    Kagawa Y; Sone N
    Methods Enzymol; 1979; 55():364-72. PubMed ID: 156844
    [No Abstract]   [Full Text] [Related]  

  • 17. Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1.
    Kagawa Y; Hamamoto T
    Biochem Biophys Res Commun; 1997 Nov; 240(2):247-56. PubMed ID: 9388462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio.
    Cross RL; Müller V
    FEBS Lett; 2004 Oct; 576(1-2):1-4. PubMed ID: 15473999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbodiimide-binding protein of H+-translocating ATPase and inhibition of H+ conduction by dicyclohexylcarbodiimide.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biochem; 1979 Feb; 85(2):503-9. PubMed ID: 33978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TF1-ATPase and ATPase activities of assembled alpha 3 beta 3 gamma, alpha 3 beta 3 gamma delta, and alpha 3 beta 3 gamma epsilon complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the alpha 3 beta 3, and alpha 3 beta 3 delta complexes.
    Paik SR; Yokoyama K; Yoshida M; Ohta T; Kagawa Y; Allison WS
    J Bioenerg Biomembr; 1993 Dec; 25(6):679-84. PubMed ID: 8144495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.