BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 26168257)

  • 1. Metabolomics techniques for nanotoxicity investigations.
    Lv M; Huang W; Chen Z; Jiang H; Chen J; Tian Y; Zhang Z; Xu F
    Bioanalysis; 2015; 7(12):1527-44. PubMed ID: 26168257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics techniques in nanotoxicology studies.
    Schnackenberg LK; Sun J; Beger RD
    Methods Mol Biol; 2012; 926():141-56. PubMed ID: 22975962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotoxicity: the growing need for in vivo study.
    Fischer HC; Chan WC
    Curr Opin Biotechnol; 2007 Dec; 18(6):565-71. PubMed ID: 18160274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of metabolomics in nanotoxicity].
    Zou XX; Wang HJ; Liu LH; Zhang B
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2020 Sep; 38(9):712-717. PubMed ID: 33036542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Untargeted metabolomics for Achilles heel of engineered nanomaterials' risk assessment.
    Ahmad F; Abubshait SA; Abubshait HA
    Chemosphere; 2021 Jan; 262():128058. PubMed ID: 33182140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges.
    Li X; Peng T; Mu L; Hu X
    Ecotoxicol Environ Saf; 2019 Nov; 184():109602. PubMed ID: 31493589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotoxicity assessment: A challenging application for cutting edge electroanalytical tools.
    Bettazzi F; Palchetti I
    Anal Chim Acta; 2019 Sep; 1072():61-74. PubMed ID: 31146866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotoxicology and in vitro studies: the need of the hour.
    Arora S; Rajwade JM; Paknikar KM
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):151-65. PubMed ID: 22178382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.
    Costa PM; Fadeel B
    Toxicol Appl Pharmacol; 2016 May; 299():101-11. PubMed ID: 26721310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo methods of nanotoxicology.
    Greish K; Thiagarajan G; Ghandehari H
    Methods Mol Biol; 2012; 926():235-53. PubMed ID: 22975969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of in vitro systems for nanotoxicology: methodological considerations.
    Stone V; Johnston H; Schins RP
    Crit Rev Toxicol; 2009; 39(7):613-26. PubMed ID: 19650720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM).
    Westmeier D; Stauber RH; Docter D
    Toxicol Appl Pharmacol; 2016 May; 299():53-7. PubMed ID: 26592323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap.
    Joris F; Manshian BB; Peynshaert K; De Smedt SC; Braeckmans K; Soenen SJ
    Chem Soc Rev; 2013 Nov; 42(21):8339-59. PubMed ID: 23877583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health--ENPRA Project--The Highlights, Limitations, and Current and Future Challenges.
    Kermanizadeh A; Gosens I; MacCalman L; Johnston H; Danielsen PH; Jacobsen NR; Lenz AG; Fernandes T; Schins RP; Cassee FR; Wallin H; Kreyling W; Stoeger T; Loft S; Møller P; Tran L; Stone V
    J Toxicol Environ Health B Crit Rev; 2016; 19(1):1-28. PubMed ID: 27030582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.